Metamath Proof Explorer
		
		
		
		Description:  Trichotomy law for 'less than or equal to'.  (Contributed by NM, 2-Aug-1999)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						lt.1 | 
						⊢ 𝐴  ∈  ℝ  | 
					
					
						 | 
						 | 
						lt.2 | 
						⊢ 𝐵  ∈  ℝ  | 
					
				
					 | 
					Assertion | 
					letrii | 
					⊢  ( 𝐴  ≤  𝐵  ∨  𝐵  ≤  𝐴 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lt.1 | 
							⊢ 𝐴  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							lt.2 | 
							⊢ 𝐵  ∈  ℝ  | 
						
						
							| 3 | 
							
								2 1
							 | 
							ltnlei | 
							⊢ ( 𝐵  <  𝐴  ↔  ¬  𝐴  ≤  𝐵 )  | 
						
						
							| 4 | 
							
								2 1
							 | 
							ltlei | 
							⊢ ( 𝐵  <  𝐴  →  𝐵  ≤  𝐴 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylbir | 
							⊢ ( ¬  𝐴  ≤  𝐵  →  𝐵  ≤  𝐴 )  | 
						
						
							| 6 | 
							
								5
							 | 
							orri | 
							⊢ ( 𝐴  ≤  𝐵  ∨  𝐵  ≤  𝐴 )  |