| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grimgrtri.g |
|- ( ph -> G e. UHGraph ) |
| 2 |
|
grimgrtri.h |
|- ( ph -> H e. UHGraph ) |
| 3 |
|
grimgrtri.n |
|- ( ph -> F e. ( G GraphIso H ) ) |
| 4 |
|
grimgrtri.t |
|- ( ph -> T e. ( GrTriangles ` G ) ) |
| 5 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 6 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 7 |
5 6
|
grtriprop |
|- ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 9 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 10 |
5 9
|
grimf1o |
|- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 11 |
|
f1of1 |
|- ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 12 |
3 10 11
|
3syl |
|- ( ph -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 13 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 14 |
|
simplrl |
|- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) -> a e. ( Vtx ` G ) ) |
| 15 |
14
|
adantr |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> a e. ( Vtx ` G ) ) |
| 16 |
|
simprr |
|- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) -> b e. ( Vtx ` G ) ) |
| 17 |
16
|
adantr |
|- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) -> b e. ( Vtx ` G ) ) |
| 18 |
17
|
adantr |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> b e. ( Vtx ` G ) ) |
| 19 |
|
simplr |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> c e. ( Vtx ` G ) ) |
| 20 |
15 18 19
|
3jca |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) |
| 21 |
|
3simpa |
|- ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) |
| 22 |
21
|
adantl |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) |
| 23 |
|
grtrimap |
|- ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) ) |
| 24 |
23
|
imp |
|- ( ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) |
| 25 |
13 20 22 24
|
syl12anc |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) |
| 26 |
|
eqid |
|- ( Edg ` H ) = ( Edg ` H ) |
| 27 |
5 6 26
|
grimedg |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( { a , b } e. ( Edg ` G ) <-> ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) ) ) |
| 28 |
5 6 26
|
grimedg |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( { a , c } e. ( Edg ` G ) <-> ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) ) ) |
| 29 |
5 6 26
|
grimedg |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( { b , c } e. ( Edg ` G ) <-> ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) ) |
| 30 |
27 28 29
|
3anbi123d |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) <-> ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) ) ) |
| 31 |
|
f1ofn |
|- ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> F Fn ( Vtx ` G ) ) |
| 32 |
|
simpl |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> F Fn ( Vtx ` G ) ) |
| 33 |
|
simprll |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> a e. ( Vtx ` G ) ) |
| 34 |
|
simprlr |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> b e. ( Vtx ` G ) ) |
| 35 |
|
fnimapr |
|- ( ( F Fn ( Vtx ` G ) /\ a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) -> ( F " { a , b } ) = { ( F ` a ) , ( F ` b ) } ) |
| 36 |
32 33 34 35
|
syl3anc |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( F " { a , b } ) = { ( F ` a ) , ( F ` b ) } ) |
| 37 |
36
|
eleq1d |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , b } ) e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 38 |
37
|
biimpd |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , b } ) e. ( Edg ` H ) -> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 39 |
38
|
adantrd |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) -> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 40 |
|
simprr |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> c e. ( Vtx ` G ) ) |
| 41 |
|
fnimapr |
|- ( ( F Fn ( Vtx ` G ) /\ a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( F " { a , c } ) = { ( F ` a ) , ( F ` c ) } ) |
| 42 |
32 33 40 41
|
syl3anc |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( F " { a , c } ) = { ( F ` a ) , ( F ` c ) } ) |
| 43 |
42
|
eleq1d |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , c } ) e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 44 |
43
|
biimpd |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , c } ) e. ( Edg ` H ) -> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 45 |
44
|
adantrd |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) -> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 46 |
|
fnimapr |
|- ( ( F Fn ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( F " { b , c } ) = { ( F ` b ) , ( F ` c ) } ) |
| 47 |
32 34 40 46
|
syl3anc |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( F " { b , c } ) = { ( F ` b ) , ( F ` c ) } ) |
| 48 |
47
|
eleq1d |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { b , c } ) e. ( Edg ` H ) <-> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 49 |
48
|
biimpd |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { b , c } ) e. ( Edg ` H ) -> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 50 |
49
|
adantrd |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) -> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 51 |
39 45 50
|
3anim123d |
|- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) |
| 52 |
51
|
ex |
|- ( F Fn ( Vtx ` G ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 53 |
52
|
com23 |
|- ( F Fn ( Vtx ` G ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 54 |
10 31 53
|
3syl |
|- ( F e. ( G GraphIso H ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 55 |
54
|
3ad2ant3 |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 56 |
30 55
|
sylbid |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 57 |
56
|
2a1d |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( T = { a , b , c } -> ( ( # ` T ) = 3 -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) ) ) |
| 58 |
57
|
3impd |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 59 |
58
|
com23 |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 60 |
1 2 3 59
|
syl3anc |
|- ( ph -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 61 |
60
|
impl |
|- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) |
| 62 |
61
|
imp |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 63 |
|
tpeq1 |
|- ( x = ( F ` a ) -> { x , y , z } = { ( F ` a ) , y , z } ) |
| 64 |
63
|
eqeq2d |
|- ( x = ( F ` a ) -> ( ( F " T ) = { x , y , z } <-> ( F " T ) = { ( F ` a ) , y , z } ) ) |
| 65 |
|
preq1 |
|- ( x = ( F ` a ) -> { x , y } = { ( F ` a ) , y } ) |
| 66 |
65
|
eleq1d |
|- ( x = ( F ` a ) -> ( { x , y } e. ( Edg ` H ) <-> { ( F ` a ) , y } e. ( Edg ` H ) ) ) |
| 67 |
|
preq1 |
|- ( x = ( F ` a ) -> { x , z } = { ( F ` a ) , z } ) |
| 68 |
67
|
eleq1d |
|- ( x = ( F ` a ) -> ( { x , z } e. ( Edg ` H ) <-> { ( F ` a ) , z } e. ( Edg ` H ) ) ) |
| 69 |
66 68
|
3anbi12d |
|- ( x = ( F ` a ) -> ( ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) <-> ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 70 |
64 69
|
3anbi13d |
|- ( x = ( F ` a ) -> ( ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> ( ( F " T ) = { ( F ` a ) , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 71 |
|
tpeq2 |
|- ( y = ( F ` b ) -> { ( F ` a ) , y , z } = { ( F ` a ) , ( F ` b ) , z } ) |
| 72 |
71
|
eqeq2d |
|- ( y = ( F ` b ) -> ( ( F " T ) = { ( F ` a ) , y , z } <-> ( F " T ) = { ( F ` a ) , ( F ` b ) , z } ) ) |
| 73 |
|
preq2 |
|- ( y = ( F ` b ) -> { ( F ` a ) , y } = { ( F ` a ) , ( F ` b ) } ) |
| 74 |
73
|
eleq1d |
|- ( y = ( F ` b ) -> ( { ( F ` a ) , y } e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 75 |
|
preq1 |
|- ( y = ( F ` b ) -> { y , z } = { ( F ` b ) , z } ) |
| 76 |
75
|
eleq1d |
|- ( y = ( F ` b ) -> ( { y , z } e. ( Edg ` H ) <-> { ( F ` b ) , z } e. ( Edg ` H ) ) ) |
| 77 |
74 76
|
3anbi13d |
|- ( y = ( F ` b ) -> ( ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) <-> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) ) ) |
| 78 |
72 77
|
3anbi13d |
|- ( y = ( F ` b ) -> ( ( ( F " T ) = { ( F ` a ) , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) ) ) ) |
| 79 |
|
tpeq3 |
|- ( z = ( F ` c ) -> { ( F ` a ) , ( F ` b ) , z } = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) |
| 80 |
79
|
eqeq2d |
|- ( z = ( F ` c ) -> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , z } <-> ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) ) |
| 81 |
|
preq2 |
|- ( z = ( F ` c ) -> { ( F ` a ) , z } = { ( F ` a ) , ( F ` c ) } ) |
| 82 |
81
|
eleq1d |
|- ( z = ( F ` c ) -> ( { ( F ` a ) , z } e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 83 |
|
preq2 |
|- ( z = ( F ` c ) -> { ( F ` b ) , z } = { ( F ` b ) , ( F ` c ) } ) |
| 84 |
83
|
eleq1d |
|- ( z = ( F ` c ) -> ( { ( F ` b ) , z } e. ( Edg ` H ) <-> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 85 |
82 84
|
3anbi23d |
|- ( z = ( F ` c ) -> ( ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) <-> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) |
| 86 |
80 85
|
3anbi13d |
|- ( z = ( F ` c ) -> ( ( ( F " T ) = { ( F ` a ) , ( F ` b ) , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) ) <-> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 87 |
70 78 86
|
rspc3ev |
|- ( ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 88 |
87
|
3exp2 |
|- ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) -> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } -> ( ( # ` ( F " T ) ) = 3 -> ( ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) |
| 89 |
88
|
3imp |
|- ( ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) -> ( ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 90 |
25 62 89
|
sylc |
|- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 91 |
90
|
rexlimdva2 |
|- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) -> ( E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 92 |
91
|
rexlimdvva |
|- ( ph -> ( E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 93 |
8 92
|
mpd |
|- ( ph -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 94 |
9 26
|
isgrtri |
|- ( ( F " T ) e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 95 |
93 94
|
sylibr |
|- ( ph -> ( F " T ) e. ( GrTriangles ` H ) ) |