Step |
Hyp |
Ref |
Expression |
1 |
|
predgclnbgrel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
predgclnbgrel.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
3simpa |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
4 |
|
simp3 |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → { 𝑋 , 𝑁 } ∈ 𝐸 ) |
5 |
|
sseq2 |
⊢ ( 𝑒 = { 𝑋 , 𝑁 } → ( { 𝑋 , 𝑁 } ⊆ 𝑒 ↔ { 𝑋 , 𝑁 } ⊆ { 𝑋 , 𝑁 } ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) ∧ 𝑒 = { 𝑋 , 𝑁 } ) → ( { 𝑋 , 𝑁 } ⊆ 𝑒 ↔ { 𝑋 , 𝑁 } ⊆ { 𝑋 , 𝑁 } ) ) |
7 |
|
ssidd |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → { 𝑋 , 𝑁 } ⊆ { 𝑋 , 𝑁 } ) |
8 |
4 6 7
|
rspcedvd |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) |
9 |
8
|
olcd |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
10 |
1 2
|
clnbgrel |
⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
11 |
3 9 10
|
sylanbrc |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |