Step |
Hyp |
Ref |
Expression |
1 |
|
clnbgredg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
clnbgredg.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) |
3 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
4 |
3
|
biimpi |
⊢ ( 𝐾 ∈ 𝐸 → 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ∈ 𝐾 ) |
7 |
5 6
|
jca |
⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) |
8 |
7
|
anim2i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) ) |
9 |
|
3anass |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ↔ ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) |
11 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) |
13 |
|
simp2 |
⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) |
14 |
5 13
|
jca |
⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) |
15 |
14
|
anim2i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) ) |
16 |
|
3anass |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ↔ ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) |
18 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
20 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝐾 ∈ 𝐸 ) |
21 |
|
sseq2 |
⊢ ( 𝑒 = 𝐾 → ( { 𝑋 , 𝑌 } ⊆ 𝑒 ↔ { 𝑋 , 𝑌 } ⊆ 𝐾 ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) ∧ 𝑒 = 𝐾 ) → ( { 𝑋 , 𝑌 } ⊆ 𝑒 ↔ { 𝑋 , 𝑌 } ⊆ 𝐾 ) ) |
23 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → { 𝑋 , 𝑌 } ⊆ 𝐾 ) |
24 |
23
|
3adant1 |
⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → { 𝑋 , 𝑌 } ⊆ 𝐾 ) |
25 |
24
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → { 𝑋 , 𝑌 } ⊆ 𝐾 ) |
26 |
20 22 25
|
rspcedvd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑌 } ⊆ 𝑒 ) |
27 |
26
|
olcd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝑌 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑌 } ⊆ 𝑒 ) ) |
28 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
29 |
28 1
|
clnbgrel |
⊢ ( 𝑌 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑌 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑌 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑌 } ⊆ 𝑒 ) ) ) |
30 |
12 19 27 29
|
syl21anbrc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑌 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
31 |
2
|
eleq2i |
⊢ ( 𝑌 ∈ 𝑁 ↔ 𝑌 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
32 |
30 31
|
sylibr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑌 ∈ 𝑁 ) |