Description: Inference from Theorem 19.23 of Margaris p. 90, for three restricted quantifiers. (Contributed by AV, 23-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexlimdvvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝜓 → 𝜒 ) ) | |
| Assertion | rexlimdvvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝜓 → 𝜒 ) ) | |
| 2 | df-3an | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ) | |
| 3 | 1 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝜓 → 𝜒 ) ) ) |
| 4 | 2 3 | biimtrrid | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝜓 → 𝜒 ) ) ) |
| 5 | 4 | expdimp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ 𝐶 → ( 𝜓 → 𝜒 ) ) ) |
| 6 | 5 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐶 𝜓 → 𝜒 ) ) |
| 7 | 6 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 → 𝜒 ) ) |