Metamath Proof Explorer


Theorem rexlimdvvva

Description: Inference from Theorem 19.23 of Margaris p. 90, for three restricted quantifiers. (Contributed by AV, 23-Aug-2025)

Ref Expression
Hypothesis rexlimdvvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) ) → ( 𝜓𝜒 ) )
Assertion rexlimdvvva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdvvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) ) → ( 𝜓𝜒 ) )
2 df-3an ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧𝐶 ) )
3 1 ex ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → ( 𝜓𝜒 ) ) )
4 2 3 biimtrrid ( 𝜑 → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧𝐶 ) → ( 𝜓𝜒 ) ) )
5 4 expdimp ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑧𝐶 → ( 𝜓𝜒 ) ) )
6 5 rexlimdv ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( ∃ 𝑧𝐶 𝜓𝜒 ) )
7 6 rexlimdvva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓𝜒 ) )