| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grlimgredgex.i |
|- I = ( Edg ` G ) |
| 2 |
|
grlimgredgex.e |
|- E = ( Edg ` H ) |
| 3 |
|
grlimgredgex.v |
|- V = ( Vtx ` H ) |
| 4 |
|
grlimgredgex.a |
|- ( ph -> A e. X ) |
| 5 |
|
grlimgredgex.b |
|- ( ph -> B e. Y ) |
| 6 |
|
grlimgredgex.p |
|- ( ph -> { A , B } e. I ) |
| 7 |
|
grlimgredgex.g |
|- ( ph -> G e. USPGraph ) |
| 8 |
|
grlimgredgex.h |
|- ( ph -> H e. USPGraph ) |
| 9 |
|
grlimgredgex.f |
|- ( ph -> F e. ( G GraphLocIso H ) ) |
| 10 |
|
eqid |
|- ( G ClNeighbVtx A ) = ( G ClNeighbVtx A ) |
| 11 |
|
eqid |
|- { x e. I | x C_ ( G ClNeighbVtx A ) } = { x e. I | x C_ ( G ClNeighbVtx A ) } |
| 12 |
|
eqid |
|- ( H ClNeighbVtx ( F ` A ) ) = ( H ClNeighbVtx ( F ` A ) ) |
| 13 |
|
eqid |
|- { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } = { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } |
| 14 |
10 1 11 12 2 13
|
grlimprclnbgrvtx |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. X /\ B e. Y /\ { A , B } e. I ) ) -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) ) |
| 15 |
7 8 9 4 5 6 14
|
syl213anc |
|- ( ph -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) ) |
| 16 |
|
f1of |
|- ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) -> f : ( G ClNeighbVtx A ) --> ( H ClNeighbVtx ( F ` A ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> f : ( G ClNeighbVtx A ) --> ( H ClNeighbVtx ( F ` A ) ) ) |
| 18 |
|
uspgrupgr |
|- ( G e. USPGraph -> G e. UPGraph ) |
| 19 |
7 18
|
syl |
|- ( ph -> G e. UPGraph ) |
| 20 |
4 5
|
jca |
|- ( ph -> ( A e. X /\ B e. Y ) ) |
| 21 |
19 20 6
|
3jca |
|- ( ph -> ( G e. UPGraph /\ ( A e. X /\ B e. Y ) /\ { A , B } e. I ) ) |
| 22 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 23 |
22 1
|
upgrpredgv |
|- ( ( G e. UPGraph /\ ( A e. X /\ B e. Y ) /\ { A , B } e. I ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
| 24 |
|
simpr |
|- ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> B e. ( Vtx ` G ) ) |
| 25 |
21 23 24
|
3syl |
|- ( ph -> B e. ( Vtx ` G ) ) |
| 26 |
|
simpl |
|- ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> A e. ( Vtx ` G ) ) |
| 27 |
21 23 26
|
3syl |
|- ( ph -> A e. ( Vtx ` G ) ) |
| 28 |
22 1
|
predgclnbgrel |
|- ( ( B e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) /\ { A , B } e. I ) -> B e. ( G ClNeighbVtx A ) ) |
| 29 |
25 27 6 28
|
syl3anc |
|- ( ph -> B e. ( G ClNeighbVtx A ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> B e. ( G ClNeighbVtx A ) ) |
| 31 |
17 30
|
ffvelcdmd |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` B ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 32 |
3
|
clnbgrisvtx |
|- ( ( f ` B ) e. ( H ClNeighbVtx ( F ` A ) ) -> ( f ` B ) e. V ) |
| 33 |
31 32
|
syl |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` B ) e. V ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> ( f ` B ) e. V ) |
| 35 |
|
preq2 |
|- ( v = ( f ` B ) -> { ( F ` A ) , v } = { ( F ` A ) , ( f ` B ) } ) |
| 36 |
35
|
eleq1d |
|- ( v = ( f ` B ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` B ) } e. E ) ) |
| 37 |
36
|
adantl |
|- ( ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) /\ v = ( f ` B ) ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` B ) } e. E ) ) |
| 38 |
|
sseq1 |
|- ( x = { ( F ` A ) , ( f ` B ) } -> ( x C_ ( H ClNeighbVtx ( F ` A ) ) <-> { ( F ` A ) , ( f ` B ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 39 |
38
|
elrab |
|- ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } <-> ( { ( F ` A ) , ( f ` B ) } e. E /\ { ( F ` A ) , ( f ` B ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 40 |
39
|
simplbi |
|- ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> { ( F ` A ) , ( f ` B ) } e. E ) |
| 41 |
40
|
adantl |
|- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> { ( F ` A ) , ( f ` B ) } e. E ) |
| 42 |
34 37 41
|
rspcedvd |
|- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> E. v e. V { ( F ` A ) , v } e. E ) |
| 43 |
42
|
ex |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 44 |
22
|
clnbgrvtxel |
|- ( A e. ( Vtx ` G ) -> A e. ( G ClNeighbVtx A ) ) |
| 45 |
27 44
|
syl |
|- ( ph -> A e. ( G ClNeighbVtx A ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> A e. ( G ClNeighbVtx A ) ) |
| 47 |
17 46
|
ffvelcdmd |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` A ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 48 |
3
|
clnbgrisvtx |
|- ( ( f ` A ) e. ( H ClNeighbVtx ( F ` A ) ) -> ( f ` A ) e. V ) |
| 49 |
47 48
|
syl |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( f ` A ) e. V ) |
| 50 |
49
|
adantr |
|- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> ( f ` A ) e. V ) |
| 51 |
|
preq2 |
|- ( v = ( f ` A ) -> { ( F ` A ) , v } = { ( F ` A ) , ( f ` A ) } ) |
| 52 |
51
|
eleq1d |
|- ( v = ( f ` A ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` A ) } e. E ) ) |
| 53 |
52
|
adantl |
|- ( ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) /\ v = ( f ` A ) ) -> ( { ( F ` A ) , v } e. E <-> { ( F ` A ) , ( f ` A ) } e. E ) ) |
| 54 |
|
sseq1 |
|- ( x = { ( F ` A ) , ( f ` A ) } -> ( x C_ ( H ClNeighbVtx ( F ` A ) ) <-> { ( F ` A ) , ( f ` A ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 55 |
54
|
elrab |
|- ( { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } <-> ( { ( F ` A ) , ( f ` A ) } e. E /\ { ( F ` A ) , ( f ` A ) } C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 56 |
55
|
simplbi |
|- ( { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> { ( F ` A ) , ( f ` A ) } e. E ) |
| 57 |
56
|
adantl |
|- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> { ( F ` A ) , ( f ` A ) } e. E ) |
| 58 |
50 53 57
|
rspcedvd |
|- ( ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> E. v e. V { ( F ` A ) , v } e. E ) |
| 59 |
58
|
ex |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 60 |
43 59
|
jaod |
|- ( ( ph /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 61 |
60
|
expimpd |
|- ( ph -> ( ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 62 |
61
|
exlimdv |
|- ( ph -> ( E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ ( { ( F ` A ) , ( f ` B ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } \/ { ( F ` A ) , ( f ` A ) } e. { x e. E | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) -> E. v e. V { ( F ` A ) , v } e. E ) ) |
| 63 |
15 62
|
mpd |
|- ( ph -> E. v e. V { ( F ` A ) , v } e. E ) |