Metamath Proof Explorer


Theorem grlimpredg

Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge in H . (Contributed by AV, 27-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n N = G ClNeighbVtx A
clnbgrvtxedg.i I = Edg G
clnbgrvtxedg.k K = x I | x N
grlimedgclnbgr.m M = H ClNeighbVtx F A
grlimedgclnbgr.j J = Edg H
grlimedgclnbgr.l L = x J | x M
Assertion grlimpredg G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B J

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n N = G ClNeighbVtx A
2 clnbgrvtxedg.i I = Edg G
3 clnbgrvtxedg.k K = x I | x N
4 grlimedgclnbgr.m M = H ClNeighbVtx F A
5 grlimedgclnbgr.j J = Edg H
6 grlimedgclnbgr.l L = x J | x M
7 1 2 3 4 5 6 grlimprclnbgredg G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B L
8 sseq1 x = f A f B x M f A f B M
9 8 6 elrab2 f A f B L f A f B J f A f B M
10 simpl f A f B J f A f B M f A f B J
11 10 a1i G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B J f A f B M f A f B J
12 9 11 biimtrid G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J
13 12 imdistanda G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f : N 1-1 onto M f A f B J
14 13 eximdv G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B L f f : N 1-1 onto M f A f B J
15 7 14 mpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B J