| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
|- N = ( G ClNeighbVtx A ) |
| 2 |
|
clnbgrvtxedg.i |
|- I = ( Edg ` G ) |
| 3 |
|
clnbgrvtxedg.k |
|- K = { x e. I | x C_ N } |
| 4 |
|
grlimedgclnbgr.m |
|- M = ( H ClNeighbVtx ( F ` A ) ) |
| 5 |
|
grlimedgclnbgr.j |
|- J = ( Edg ` H ) |
| 6 |
|
grlimedgclnbgr.l |
|- L = { x e. J | x C_ M } |
| 7 |
1 2 3 4 5 6
|
grlimprclnbgredg |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) |
| 8 |
|
sseq1 |
|- ( x = { ( f ` A ) , ( f ` B ) } -> ( x C_ M <-> { ( f ` A ) , ( f ` B ) } C_ M ) ) |
| 9 |
8 6
|
elrab2 |
|- ( { ( f ` A ) , ( f ` B ) } e. L <-> ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) ) |
| 10 |
|
simpl |
|- ( ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) -> { ( f ` A ) , ( f ` B ) } e. J ) |
| 11 |
10
|
a1i |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) -> { ( f ` A ) , ( f ` B ) } e. J ) ) |
| 12 |
9 11
|
biimtrid |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( { ( f ` A ) , ( f ` B ) } e. L -> { ( f ` A ) , ( f ` B ) } e. J ) ) |
| 13 |
12
|
imdistanda |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. J ) ) ) |
| 14 |
13
|
eximdv |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. J ) ) ) |
| 15 |
7 14
|
mpd |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. J ) ) |