Metamath Proof Explorer


Theorem uhgrimgrlim

Description: An isomorphism of hypergraphs is a local isomorphism between the two graphs. (Contributed by AV, 2-Jun-2025)

Ref Expression
Assertion uhgrimgrlim G UHGraph H UHGraph F G GraphIso H F G GraphLocIso H

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Vtx H = Vtx H
3 1 2 grimf1o F G GraphIso H F : Vtx G 1-1 onto Vtx H
4 3 3ad2ant3 G UHGraph H UHGraph F G GraphIso H F : Vtx G 1-1 onto Vtx H
5 simpl1 G UHGraph H UHGraph F G GraphIso H v Vtx G G UHGraph
6 simpl3 G UHGraph H UHGraph F G GraphIso H v Vtx G F G GraphIso H
7 1 clnbgrssvtx G ClNeighbVtx v Vtx G
8 7 a1i G UHGraph H UHGraph F G GraphIso H v Vtx G G ClNeighbVtx v Vtx G
9 1 uhgrimisgrgric G UHGraph F G GraphIso H G ClNeighbVtx v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr F G ClNeighbVtx v
10 5 6 8 9 syl3anc G UHGraph H UHGraph F G GraphIso H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr F G ClNeighbVtx v
11 df-3an G UHGraph H UHGraph F G GraphIso H G UHGraph H UHGraph F G GraphIso H
12 1 clnbgrgrim G UHGraph H UHGraph F G GraphIso H v Vtx G H ClNeighbVtx F v = F G ClNeighbVtx v
13 11 12 sylanb G UHGraph H UHGraph F G GraphIso H v Vtx G H ClNeighbVtx F v = F G ClNeighbVtx v
14 13 oveq2d G UHGraph H UHGraph F G GraphIso H v Vtx G H ISubGr H ClNeighbVtx F v = H ISubGr F G ClNeighbVtx v
15 10 14 breqtrrd G UHGraph H UHGraph F G GraphIso H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
16 15 ralrimiva G UHGraph H UHGraph F G GraphIso H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
17 1 2 isgrlim G UHGraph H UHGraph F G GraphIso H F G GraphLocIso H F : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
18 4 16 17 mpbir2and G UHGraph H UHGraph F G GraphIso H F G GraphLocIso H