Metamath Proof Explorer


Theorem grlimprop2

Description: Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025)

Ref Expression
Hypotheses grlimprop.v V = Vtx G
grlimprop.w W = Vtx H
grlimprop2.n N = G ClNeighbVtx v
grlimprop2.m M = H ClNeighbVtx F v
grlimprop2.i I = iEdg G
grlimprop2.j J = iEdg H
grlimprop2.k K = x dom I | I x N
grlimprop2.l L = x dom J | J x M
Assertion grlimprop2 F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i

Proof

Step Hyp Ref Expression
1 grlimprop.v V = Vtx G
2 grlimprop.w W = Vtx H
3 grlimprop2.n N = G ClNeighbVtx v
4 grlimprop2.m M = H ClNeighbVtx F v
5 grlimprop2.i I = iEdg G
6 grlimprop2.j J = iEdg H
7 grlimprop2.k K = x dom I | I x N
8 grlimprop2.l L = x dom J | J x M
9 grlimdmrel Rel dom GraphLocIso
10 9 ovrcl F G GraphLocIso H G V H V
11 id F G GraphLocIso H F G GraphLocIso H
12 df-3an G V H V F G GraphLocIso H G V H V F G GraphLocIso H
13 10 11 12 sylanbrc F G GraphLocIso H G V H V F G GraphLocIso H
14 1 2 3 4 5 6 7 8 isgrlim2 G V H V F G GraphLocIso H F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
15 13 14 syl F G GraphLocIso H F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
16 15 ibi F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i