Step |
Hyp |
Ref |
Expression |
1 |
|
grlimprop.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
grlimprop.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
grlimprop2.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) |
4 |
|
grlimprop2.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) |
5 |
|
grlimprop2.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
6 |
|
grlimprop2.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
7 |
|
grlimprop2.k |
⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } |
8 |
|
grlimprop2.l |
⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } |
9 |
|
grlimdmrel |
⊢ Rel dom GraphLocIso |
10 |
9
|
ovrcl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
11 |
|
id |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
12 |
|
df-3an |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ↔ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ) |
13 |
10 11 12
|
sylanbrc |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ) |
14 |
1 2 3 4 5 6 7 8
|
isgrlim2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
16 |
15
|
ibi |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |