Metamath Proof Explorer


Theorem grilcbri

Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025)

Ref Expression
Hypotheses dfgrlic2.v 𝑉 = ( Vtx ‘ 𝐺 )
dfgrlic2.w 𝑊 = ( Vtx ‘ 𝐻 )
Assertion grilcbri ( 𝐺𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dfgrlic2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dfgrlic2.w 𝑊 = ( Vtx ‘ 𝐻 )
3 grlicrcl ( 𝐺𝑙𝑔𝑟 𝐻 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) )
4 1 2 dfgrlic2 ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) ) )
5 3 4 syl ( 𝐺𝑙𝑔𝑟 𝐻 → ( 𝐺𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) ) )
6 5 ibi ( 𝐺𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) )