Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrlic2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfgrlic2.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
grlicrcl |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
4 |
1 2
|
dfgrlic2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
6 |
5
|
ibi |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) |