Metamath Proof Explorer


Theorem grilcbri

Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025)

Ref Expression
Hypotheses dfgrlic2.v V = Vtx G
dfgrlic2.w W = Vtx H
Assertion grilcbri G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v

Proof

Step Hyp Ref Expression
1 dfgrlic2.v V = Vtx G
2 dfgrlic2.w W = Vtx H
3 grlicrcl G 𝑙𝑔𝑟 H G V H V
4 1 2 dfgrlic2 G V H V G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
5 3 4 syl G 𝑙𝑔𝑟 H G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
6 5 ibi G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v