Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Local isomorphisms of graphs
grilcbri
Next ⟩
dfgrlic3
Metamath Proof Explorer
Ascii
Unicode
Theorem
grilcbri
Description:
Implications of two graphs being locally isomorphic.
(Contributed by
AV
, 9-Jun-2025)
Ref
Expression
Hypotheses
dfgrlic2.v
⊢
V
=
Vtx
⁡
G
dfgrlic2.w
⊢
W
=
Vtx
⁡
H
Assertion
grilcbri
⊢
G
≃
𝑙𝑔𝑟
H
→
∃
f
f
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
f
⁡
v
Proof
Step
Hyp
Ref
Expression
1
dfgrlic2.v
⊢
V
=
Vtx
⁡
G
2
dfgrlic2.w
⊢
W
=
Vtx
⁡
H
3
grlicrcl
⊢
G
≃
𝑙𝑔𝑟
H
→
G
∈
V
∧
H
∈
V
4
1
2
dfgrlic2
⊢
G
∈
V
∧
H
∈
V
→
G
≃
𝑙𝑔𝑟
H
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
f
⁡
v
5
3
4
syl
⊢
G
≃
𝑙𝑔𝑟
H
→
G
≃
𝑙𝑔𝑟
H
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
f
⁡
v
6
5
ibi
⊢
G
≃
𝑙𝑔𝑟
H
→
∃
f
f
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
f
⁡
v