Metamath Proof Explorer


Theorem dfgrlic2

Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025)

Ref Expression
Hypotheses dfgrlic2.v V = Vtx G
dfgrlic2.w W = Vtx H
Assertion dfgrlic2 G X H Y G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v

Proof

Step Hyp Ref Expression
1 dfgrlic2.v V = Vtx G
2 dfgrlic2.w W = Vtx H
3 brgrlic G 𝑙𝑔𝑟 H G GraphLocIso H
4 n0 G GraphLocIso H f f G GraphLocIso H
5 3 4 bitri G 𝑙𝑔𝑟 H f f G GraphLocIso H
6 1 2 isgrlim G X H Y f V f G GraphLocIso H f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
7 6 el3v3 G X H Y f G GraphLocIso H f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
8 7 exbidv G X H Y f f G GraphLocIso H f f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
9 5 8 bitrid G X H Y G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v