Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrlic2.v |
|- V = ( Vtx ` G ) |
2 |
|
dfgrlic2.w |
|- W = ( Vtx ` H ) |
3 |
|
brgrlic |
|- ( G ~=lgr H <-> ( G GraphLocIso H ) =/= (/) ) |
4 |
|
n0 |
|- ( ( G GraphLocIso H ) =/= (/) <-> E. f f e. ( G GraphLocIso H ) ) |
5 |
3 4
|
bitri |
|- ( G ~=lgr H <-> E. f f e. ( G GraphLocIso H ) ) |
6 |
1 2
|
isgrlim |
|- ( ( G e. X /\ H e. Y /\ f e. _V ) -> ( f e. ( G GraphLocIso H ) <-> ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
7 |
6
|
el3v3 |
|- ( ( G e. X /\ H e. Y ) -> ( f e. ( G GraphLocIso H ) <-> ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
8 |
7
|
exbidv |
|- ( ( G e. X /\ H e. Y ) -> ( E. f f e. ( G GraphLocIso H ) <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
9 |
5 8
|
bitrid |
|- ( ( G e. X /\ H e. Y ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |