Metamath Proof Explorer


Theorem dfgrlic3

Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025)

Ref Expression
Hypotheses dfgrlic2.v V = Vtx G
dfgrlic2.w W = Vtx H
dfgrlic3.i I = iEdg G
dfgrlic3.j J = iEdg H
dfgrlic3.n N = G ClNeighbVtx v
dfgrlic3.m M = H ClNeighbVtx f v
dfgrlic3.k K = x dom I | I x N
dfgrlic3.l L = x dom J | J x M
Assertion dfgrlic3 G X H Y G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i

Proof

Step Hyp Ref Expression
1 dfgrlic2.v V = Vtx G
2 dfgrlic2.w W = Vtx H
3 dfgrlic3.i I = iEdg G
4 dfgrlic3.j J = iEdg H
5 dfgrlic3.n N = G ClNeighbVtx v
6 dfgrlic3.m M = H ClNeighbVtx f v
7 dfgrlic3.k K = x dom I | I x N
8 dfgrlic3.l L = x dom J | J x M
9 brgrlic G 𝑙𝑔𝑟 H G GraphLocIso H
10 n0 G GraphLocIso H f f G GraphLocIso H
11 9 10 bitri G 𝑙𝑔𝑟 H f f G GraphLocIso H
12 1 2 5 6 3 4 7 8 isgrlim2 G X H Y f V f G GraphLocIso H f : V 1-1 onto W v V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
13 12 el3v3 G X H Y f G GraphLocIso H f : V 1-1 onto W v V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
14 13 exbidv G X H Y f f G GraphLocIso H f f : V 1-1 onto W v V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
15 11 14 bitrid G X H Y G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i