Metamath Proof Explorer


Theorem grilcbri2

Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025)

Ref Expression
Hypotheses dfgrlic2.v V = Vtx G
dfgrlic2.w W = Vtx H
dfgrlic3.i I = iEdg G
dfgrlic3.j J = iEdg H
grilcbri2.n N = G ClNeighbVtx X
grilcbri2.m M = H ClNeighbVtx f X
grilcbri2.k K = x dom I | I x N
grilcbri2.l L = x dom J | J x M
Assertion grilcbri2 G 𝑙𝑔𝑟 H f f : V 1-1 onto W X V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i

Proof

Step Hyp Ref Expression
1 dfgrlic2.v V = Vtx G
2 dfgrlic2.w W = Vtx H
3 dfgrlic3.i I = iEdg G
4 dfgrlic3.j J = iEdg H
5 grilcbri2.n N = G ClNeighbVtx X
6 grilcbri2.m M = H ClNeighbVtx f X
7 grilcbri2.k K = x dom I | I x N
8 grilcbri2.l L = x dom J | J x M
9 brgrlic G 𝑙𝑔𝑟 H G GraphLocIso H
10 grlimdmrel Rel dom GraphLocIso
11 10 ovprc ¬ G V H V G GraphLocIso H =
12 11 necon1ai G GraphLocIso H G V H V
13 9 12 sylbi G 𝑙𝑔𝑟 H G V H V
14 eqid G ClNeighbVtx v = G ClNeighbVtx v
15 eqid H ClNeighbVtx f v = H ClNeighbVtx f v
16 eqid x dom I | I x G ClNeighbVtx v = x dom I | I x G ClNeighbVtx v
17 eqid x dom J | J x H ClNeighbVtx f v = x dom J | J x H ClNeighbVtx f v
18 1 2 3 4 14 15 16 17 dfgrlic3 G V H V G 𝑙𝑔𝑟 H f f : V 1-1 onto W v V j j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i
19 eqidd v = X j = j
20 oveq2 v = X G ClNeighbVtx v = G ClNeighbVtx X
21 20 5 eqtr4di v = X G ClNeighbVtx v = N
22 fveq2 v = X f v = f X
23 22 oveq2d v = X H ClNeighbVtx f v = H ClNeighbVtx f X
24 23 6 eqtr4di v = X H ClNeighbVtx f v = M
25 19 21 24 f1oeq123d v = X j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v j : N 1-1 onto M
26 eqidd v = X g = g
27 21 sseq2d v = X I x G ClNeighbVtx v I x N
28 27 rabbidv v = X x dom I | I x G ClNeighbVtx v = x dom I | I x N
29 28 7 eqtr4di v = X x dom I | I x G ClNeighbVtx v = K
30 24 sseq2d v = X J x H ClNeighbVtx f v J x M
31 30 rabbidv v = X x dom J | J x H ClNeighbVtx f v = x dom J | J x M
32 31 8 eqtr4di v = X x dom J | J x H ClNeighbVtx f v = L
33 26 29 32 f1oeq123d v = X g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v g : K 1-1 onto L
34 29 raleqdv v = X i x dom I | I x G ClNeighbVtx v j I i = J g i i K j I i = J g i
35 33 34 anbi12d v = X g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i g : K 1-1 onto L i K j I i = J g i
36 35 exbidv v = X g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i g g : K 1-1 onto L i K j I i = J g i
37 25 36 anbi12d v = X j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
38 37 exbidv v = X j j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
39 38 rspcv X V v V j j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
40 39 com12 v V j j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i X V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
41 40 a1i G V H V v V j j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i X V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
42 41 anim2d G V H V f : V 1-1 onto W v V j j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i f : V 1-1 onto W X V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
43 42 eximdv G V H V f f : V 1-1 onto W v V j j : G ClNeighbVtx v 1-1 onto H ClNeighbVtx f v g g : x dom I | I x G ClNeighbVtx v 1-1 onto x dom J | J x H ClNeighbVtx f v i x dom I | I x G ClNeighbVtx v j I i = J g i f f : V 1-1 onto W X V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
44 18 43 sylbid G V H V G 𝑙𝑔𝑟 H f f : V 1-1 onto W X V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i
45 13 44 mpcom G 𝑙𝑔𝑟 H f f : V 1-1 onto W X V j j : N 1-1 onto M g g : K 1-1 onto L i K j I i = J g i