Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrlic2.v |
|- V = ( Vtx ` G ) |
2 |
|
dfgrlic2.w |
|- W = ( Vtx ` H ) |
3 |
|
dfgrlic3.i |
|- I = ( iEdg ` G ) |
4 |
|
dfgrlic3.j |
|- J = ( iEdg ` H ) |
5 |
|
grilcbri2.n |
|- N = ( G ClNeighbVtx X ) |
6 |
|
grilcbri2.m |
|- M = ( H ClNeighbVtx ( f ` X ) ) |
7 |
|
grilcbri2.k |
|- K = { x e. dom I | ( I ` x ) C_ N } |
8 |
|
grilcbri2.l |
|- L = { x e. dom J | ( J ` x ) C_ M } |
9 |
|
brgrlic |
|- ( G ~=lgr H <-> ( G GraphLocIso H ) =/= (/) ) |
10 |
|
grlimdmrel |
|- Rel dom GraphLocIso |
11 |
10
|
ovprc |
|- ( -. ( G e. _V /\ H e. _V ) -> ( G GraphLocIso H ) = (/) ) |
12 |
11
|
necon1ai |
|- ( ( G GraphLocIso H ) =/= (/) -> ( G e. _V /\ H e. _V ) ) |
13 |
9 12
|
sylbi |
|- ( G ~=lgr H -> ( G e. _V /\ H e. _V ) ) |
14 |
|
eqid |
|- ( G ClNeighbVtx v ) = ( G ClNeighbVtx v ) |
15 |
|
eqid |
|- ( H ClNeighbVtx ( f ` v ) ) = ( H ClNeighbVtx ( f ` v ) ) |
16 |
|
eqid |
|- { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } = { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } |
17 |
|
eqid |
|- { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } = { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } |
18 |
1 2 3 4 14 15 16 17
|
dfgrlic3 |
|- ( ( G e. _V /\ H e. _V ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
19 |
|
eqidd |
|- ( v = X -> j = j ) |
20 |
|
oveq2 |
|- ( v = X -> ( G ClNeighbVtx v ) = ( G ClNeighbVtx X ) ) |
21 |
20 5
|
eqtr4di |
|- ( v = X -> ( G ClNeighbVtx v ) = N ) |
22 |
|
fveq2 |
|- ( v = X -> ( f ` v ) = ( f ` X ) ) |
23 |
22
|
oveq2d |
|- ( v = X -> ( H ClNeighbVtx ( f ` v ) ) = ( H ClNeighbVtx ( f ` X ) ) ) |
24 |
23 6
|
eqtr4di |
|- ( v = X -> ( H ClNeighbVtx ( f ` v ) ) = M ) |
25 |
19 21 24
|
f1oeq123d |
|- ( v = X -> ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) <-> j : N -1-1-onto-> M ) ) |
26 |
|
eqidd |
|- ( v = X -> g = g ) |
27 |
21
|
sseq2d |
|- ( v = X -> ( ( I ` x ) C_ ( G ClNeighbVtx v ) <-> ( I ` x ) C_ N ) ) |
28 |
27
|
rabbidv |
|- ( v = X -> { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } = { x e. dom I | ( I ` x ) C_ N } ) |
29 |
28 7
|
eqtr4di |
|- ( v = X -> { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } = K ) |
30 |
24
|
sseq2d |
|- ( v = X -> ( ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) <-> ( J ` x ) C_ M ) ) |
31 |
30
|
rabbidv |
|- ( v = X -> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } = { x e. dom J | ( J ` x ) C_ M } ) |
32 |
31 8
|
eqtr4di |
|- ( v = X -> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } = L ) |
33 |
26 29 32
|
f1oeq123d |
|- ( v = X -> ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } <-> g : K -1-1-onto-> L ) ) |
34 |
29
|
raleqdv |
|- ( v = X -> ( A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) <-> A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
35 |
33 34
|
anbi12d |
|- ( v = X -> ( ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) <-> ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
36 |
35
|
exbidv |
|- ( v = X -> ( E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) <-> E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
37 |
25 36
|
anbi12d |
|- ( v = X -> ( ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) <-> ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
38 |
37
|
exbidv |
|- ( v = X -> ( E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) <-> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
39 |
38
|
rspcv |
|- ( X e. V -> ( A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
40 |
39
|
com12 |
|- ( A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) -> ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
41 |
40
|
a1i |
|- ( ( G e. _V /\ H e. _V ) -> ( A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) -> ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
42 |
41
|
anim2d |
|- ( ( G e. _V /\ H e. _V ) -> ( ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) -> ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) ) |
43 |
42
|
eximdv |
|- ( ( G e. _V /\ H e. _V ) -> ( E. f ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) -> E. f ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) ) |
44 |
18 43
|
sylbid |
|- ( ( G e. _V /\ H e. _V ) -> ( G ~=lgr H -> E. f ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) ) |
45 |
13 44
|
mpcom |
|- ( G ~=lgr H -> E. f ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |