Step |
Hyp |
Ref |
Expression |
1 |
|
fvexd |
|- ( G e. UHGraph -> ( Vtx ` G ) e. _V ) |
2 |
1
|
resiexd |
|- ( G e. UHGraph -> ( _I |` ( Vtx ` G ) ) e. _V ) |
3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
4 |
3
|
clnbgrssvtx |
|- ( G ClNeighbVtx v ) C_ ( Vtx ` G ) |
5 |
4
|
a1i |
|- ( v e. ( Vtx ` G ) -> ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) |
6 |
3
|
isubgruhgr |
|- ( ( G e. UHGraph /\ ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) e. UHGraph ) |
7 |
5 6
|
sylan2 |
|- ( ( G e. UHGraph /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) e. UHGraph ) |
8 |
|
gricref |
|- ( ( G ISubGr ( G ClNeighbVtx v ) ) e. UHGraph -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) |
9 |
7 8
|
syl |
|- ( ( G e. UHGraph /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) |
10 |
9
|
ralrimiva |
|- ( G e. UHGraph -> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) |
11 |
|
f1oi |
|- ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) |
12 |
10 11
|
jctil |
|- ( G e. UHGraph -> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
13 |
|
f1oeq1 |
|- ( f = ( _I |` ( Vtx ` G ) ) -> ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) <-> ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) ) ) |
14 |
|
fveq1 |
|- ( f = ( _I |` ( Vtx ` G ) ) -> ( f ` v ) = ( ( _I |` ( Vtx ` G ) ) ` v ) ) |
15 |
14
|
oveq2d |
|- ( f = ( _I |` ( Vtx ` G ) ) -> ( G ClNeighbVtx ( f ` v ) ) = ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) |
16 |
15
|
oveq2d |
|- ( f = ( _I |` ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) = ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) ) |
17 |
16
|
breq2d |
|- ( f = ( _I |` ( Vtx ` G ) ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) ) ) |
18 |
|
fvresi |
|- ( v e. ( Vtx ` G ) -> ( ( _I |` ( Vtx ` G ) ) ` v ) = v ) |
19 |
18
|
oveq2d |
|- ( v e. ( Vtx ` G ) -> ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) = ( G ClNeighbVtx v ) ) |
20 |
19
|
oveq2d |
|- ( v e. ( Vtx ` G ) -> ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) = ( G ISubGr ( G ClNeighbVtx v ) ) ) |
21 |
20
|
breq2d |
|- ( v e. ( Vtx ` G ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( ( _I |` ( Vtx ` G ) ) ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
22 |
17 21
|
sylan9bb |
|- ( ( f = ( _I |` ( Vtx ` G ) ) /\ v e. ( Vtx ` G ) ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
23 |
22
|
ralbidva |
|- ( f = ( _I |` ( Vtx ` G ) ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) <-> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) |
24 |
13 23
|
anbi12d |
|- ( f = ( _I |` ( Vtx ` G ) ) -> ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) <-> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx v ) ) ) ) ) |
25 |
2 12 24
|
spcedv |
|- ( G e. UHGraph -> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) ) |
26 |
3 3
|
dfgrlic2 |
|- ( ( G e. UHGraph /\ G e. UHGraph ) -> ( G ~=lgr G <-> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) ) ) |
27 |
26
|
anidms |
|- ( G e. UHGraph -> ( G ~=lgr G <-> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( f ` v ) ) ) ) ) ) |
28 |
25 27
|
mpbird |
|- ( G e. UHGraph -> G ~=lgr G ) |