Metamath Proof Explorer


Theorem grlicref

Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicref ( 𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺 )

Proof

Step Hyp Ref Expression
1 fvexd ( 𝐺 ∈ UHGraph → ( Vtx ‘ 𝐺 ) ∈ V )
2 1 resiexd ( 𝐺 ∈ UHGraph → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V )
3 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
4 3 clnbgrssvtx ( 𝐺 ClNeighbVtx 𝑣 ) ⊆ ( Vtx ‘ 𝐺 )
5 4 a1i ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx 𝑣 ) ⊆ ( Vtx ‘ 𝐺 ) )
6 3 isubgruhgr ( ( 𝐺 ∈ UHGraph ∧ ( 𝐺 ClNeighbVtx 𝑣 ) ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ∈ UHGraph )
7 5 6 sylan2 ( ( 𝐺 ∈ UHGraph ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ∈ UHGraph )
8 gricref ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ∈ UHGraph → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) )
9 7 8 syl ( ( 𝐺 ∈ UHGraph ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) )
10 9 ralrimiva ( 𝐺 ∈ UHGraph → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) )
11 f1oi ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 )
12 10 11 jctil ( 𝐺 ∈ UHGraph → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) )
13 f1oeq1 ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ↔ ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) )
14 fveq1 ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝑓𝑣 ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) )
15 14 oveq2d ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) = ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) )
16 15 oveq2d ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) )
17 16 breq2d ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) ) )
18 fvresi ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) = 𝑣 )
19 18 oveq2d ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) = ( 𝐺 ClNeighbVtx 𝑣 ) )
20 19 oveq2d ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) )
21 20 breq2d ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) )
22 17 21 sylan9bb ( ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) )
23 22 ralbidva ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) )
24 13 23 anbi12d ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) ↔ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) ) )
25 2 12 24 spcedv ( 𝐺 ∈ UHGraph → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) )
26 3 3 dfgrlic2 ( ( 𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐺𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) ) )
27 26 anidms ( 𝐺 ∈ UHGraph → ( 𝐺𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑓𝑣 ) ) ) ) ) )
28 25 27 mpbird ( 𝐺 ∈ UHGraph → 𝐺𝑙𝑔𝑟 𝐺 )