Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
3 |
1 2
|
grilcbri |
|- ( G ~=lgr S -> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) ) |
4 |
|
grlicrcl |
|- ( G ~=lgr S -> ( G e. _V /\ S e. _V ) ) |
5 |
|
vex |
|- f e. _V |
6 |
|
cnvexg |
|- ( f e. _V -> `' f e. _V ) |
7 |
5 6
|
mp1i |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> `' f e. _V ) |
8 |
|
f1ocnv |
|- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) -> `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) ) |
9 |
8
|
ad2antrr |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) ) |
10 |
|
f1ocnvdm |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) ) -> ( `' f ` w ) e. ( Vtx ` G ) ) |
11 |
10
|
3adant3 |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( `' f ` w ) e. ( Vtx ` G ) ) |
12 |
|
oveq2 |
|- ( v = ( `' f ` w ) -> ( G ClNeighbVtx v ) = ( G ClNeighbVtx ( `' f ` w ) ) ) |
13 |
12
|
oveq2d |
|- ( v = ( `' f ` w ) -> ( G ISubGr ( G ClNeighbVtx v ) ) = ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) |
14 |
|
fveq2 |
|- ( v = ( `' f ` w ) -> ( f ` v ) = ( f ` ( `' f ` w ) ) ) |
15 |
14
|
oveq2d |
|- ( v = ( `' f ` w ) -> ( S ClNeighbVtx ( f ` v ) ) = ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) |
16 |
15
|
oveq2d |
|- ( v = ( `' f ` w ) -> ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) = ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) |
17 |
13 16
|
breq12d |
|- ( v = ( `' f ` w ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) ) |
18 |
17
|
rspcv |
|- ( ( `' f ` w ) e. ( Vtx ` G ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) ) |
19 |
11 18
|
syl |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) ) |
20 |
|
f1ocnvfv2 |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) ) -> ( f ` ( `' f ` w ) ) = w ) |
21 |
20
|
3adant3 |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( f ` ( `' f ` w ) ) = w ) |
22 |
21
|
oveq2d |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) = ( S ClNeighbVtx w ) ) |
23 |
22
|
oveq2d |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) = ( S ISubGr ( S ClNeighbVtx w ) ) ) |
24 |
23
|
breq2d |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) <-> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx w ) ) ) ) |
25 |
|
simp3 |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> G e. UHGraph ) |
26 |
1
|
clnbgrssvtx |
|- ( G ClNeighbVtx ( `' f ` w ) ) C_ ( Vtx ` G ) |
27 |
1
|
isubgruhgr |
|- ( ( G e. UHGraph /\ ( G ClNeighbVtx ( `' f ` w ) ) C_ ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) e. UHGraph ) |
28 |
25 26 27
|
sylancl |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) e. UHGraph ) |
29 |
|
gricsym |
|- ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) e. UHGraph -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx w ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
30 |
28 29
|
syl |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx w ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
31 |
24 30
|
sylbid |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
32 |
19 31
|
syld |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
33 |
32
|
3exp |
|- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) -> ( w e. ( Vtx ` S ) -> ( G e. UHGraph -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) ) ) |
34 |
33
|
com24 |
|- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( G e. UHGraph -> ( w e. ( Vtx ` S ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) ) ) |
35 |
34
|
imp31 |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> ( w e. ( Vtx ` S ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
36 |
35
|
ralrimiv |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) |
37 |
9 36
|
jca |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> ( `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
38 |
|
f1oeq1 |
|- ( g = `' f -> ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) <-> `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) ) ) |
39 |
|
fveq1 |
|- ( g = `' f -> ( g ` w ) = ( `' f ` w ) ) |
40 |
39
|
oveq2d |
|- ( g = `' f -> ( G ClNeighbVtx ( g ` w ) ) = ( G ClNeighbVtx ( `' f ` w ) ) ) |
41 |
40
|
oveq2d |
|- ( g = `' f -> ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) = ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) |
42 |
41
|
breq2d |
|- ( g = `' f -> ( ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) <-> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
43 |
42
|
ralbidv |
|- ( g = `' f -> ( A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) <-> A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
44 |
38 43
|
anbi12d |
|- ( g = `' f -> ( ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) <-> ( `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) ) |
45 |
7 37 44
|
spcedv |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) |
46 |
45
|
3adant3 |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph /\ ( G e. _V /\ S e. _V ) ) -> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) |
47 |
2 1
|
dfgrlic2 |
|- ( ( S e. _V /\ G e. _V ) -> ( S ~=lgr G <-> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) ) |
48 |
47
|
ancoms |
|- ( ( G e. _V /\ S e. _V ) -> ( S ~=lgr G <-> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) ) |
49 |
48
|
3ad2ant3 |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph /\ ( G e. _V /\ S e. _V ) ) -> ( S ~=lgr G <-> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) ) |
50 |
46 49
|
mpbird |
|- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph /\ ( G e. _V /\ S e. _V ) ) -> S ~=lgr G ) |
51 |
50
|
3exp |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) -> ( G e. UHGraph -> ( ( G e. _V /\ S e. _V ) -> S ~=lgr G ) ) ) |
52 |
51
|
com23 |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) -> ( ( G e. _V /\ S e. _V ) -> ( G e. UHGraph -> S ~=lgr G ) ) ) |
53 |
52
|
exlimiv |
|- ( E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) -> ( ( G e. _V /\ S e. _V ) -> ( G e. UHGraph -> S ~=lgr G ) ) ) |
54 |
3 4 53
|
sylc |
|- ( G ~=lgr S -> ( G e. UHGraph -> S ~=lgr G ) ) |
55 |
54
|
com12 |
|- ( G e. UHGraph -> ( G ~=lgr S -> S ~=lgr G ) ) |