Metamath Proof Explorer


Theorem grlicrcl

Description: Reverse closure of the "is locally isomorphic to" relation for graphs. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicrcl
|- ( G ~=lgr S -> ( G e. _V /\ S e. _V ) )

Proof

Step Hyp Ref Expression
1 brgrlic
 |-  ( G ~=lgr S <-> ( G GraphLocIso S ) =/= (/) )
2 grlimdmrel
 |-  Rel dom GraphLocIso
3 2 ovprc
 |-  ( -. ( G e. _V /\ S e. _V ) -> ( G GraphLocIso S ) = (/) )
4 3 necon1ai
 |-  ( ( G GraphLocIso S ) =/= (/) -> ( G e. _V /\ S e. _V ) )
5 1 4 sylbi
 |-  ( G ~=lgr S -> ( G e. _V /\ S e. _V ) )