Metamath Proof Explorer


Theorem grlicsym

Description: Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicsym G UHGraph G 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 G

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Vtx S = Vtx S
3 1 2 grilcbri G 𝑙𝑔𝑟 S f f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v
4 grlicrcl G 𝑙𝑔𝑟 S G V S V
5 vex f V
6 cnvexg f V f -1 V
7 5 6 mp1i f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph f -1 V
8 f1ocnv f : Vtx G 1-1 onto Vtx S f -1 : Vtx S 1-1 onto Vtx G
9 8 ad2antrr f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph f -1 : Vtx S 1-1 onto Vtx G
10 f1ocnvdm f : Vtx G 1-1 onto Vtx S w Vtx S f -1 w Vtx G
11 10 3adant3 f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph f -1 w Vtx G
12 oveq2 v = f -1 w G ClNeighbVtx v = G ClNeighbVtx f -1 w
13 12 oveq2d v = f -1 w G ISubGr G ClNeighbVtx v = G ISubGr G ClNeighbVtx f -1 w
14 fveq2 v = f -1 w f v = f f -1 w
15 14 oveq2d v = f -1 w S ClNeighbVtx f v = S ClNeighbVtx f f -1 w
16 15 oveq2d v = f -1 w S ISubGr S ClNeighbVtx f v = S ISubGr S ClNeighbVtx f f -1 w
17 13 16 breq12d v = f -1 w G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx f f -1 w
18 17 rspcv f -1 w Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx f f -1 w
19 11 18 syl f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx f f -1 w
20 f1ocnvfv2 f : Vtx G 1-1 onto Vtx S w Vtx S f f -1 w = w
21 20 3adant3 f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph f f -1 w = w
22 21 oveq2d f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph S ClNeighbVtx f f -1 w = S ClNeighbVtx w
23 22 oveq2d f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph S ISubGr S ClNeighbVtx f f -1 w = S ISubGr S ClNeighbVtx w
24 23 breq2d f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx f f -1 w G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx w
25 simp3 f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph G UHGraph
26 1 clnbgrssvtx G ClNeighbVtx f -1 w Vtx G
27 1 isubgruhgr G UHGraph G ClNeighbVtx f -1 w Vtx G G ISubGr G ClNeighbVtx f -1 w UHGraph
28 25 26 27 sylancl f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph G ISubGr G ClNeighbVtx f -1 w UHGraph
29 gricsym G ISubGr G ClNeighbVtx f -1 w UHGraph G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx w S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
30 28 29 syl f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx w S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
31 24 30 sylbid f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph G ISubGr G ClNeighbVtx f -1 w 𝑔𝑟 S ISubGr S ClNeighbVtx f f -1 w S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
32 19 31 syld f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
33 32 3exp f : Vtx G 1-1 onto Vtx S w Vtx S G UHGraph v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
34 33 com24 f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
35 34 imp31 f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
36 35 ralrimiv f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
37 9 36 jca f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph f -1 : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
38 f1oeq1 g = f -1 g : Vtx S 1-1 onto Vtx G f -1 : Vtx S 1-1 onto Vtx G
39 fveq1 g = f -1 g w = f -1 w
40 39 oveq2d g = f -1 G ClNeighbVtx g w = G ClNeighbVtx f -1 w
41 40 oveq2d g = f -1 G ISubGr G ClNeighbVtx g w = G ISubGr G ClNeighbVtx f -1 w
42 41 breq2d g = f -1 S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
43 42 ralbidv g = f -1 w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
44 38 43 anbi12d g = f -1 g : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w f -1 : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx f -1 w
45 7 37 44 spcedv f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph g g : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w
46 45 3adant3 f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph G V S V g g : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w
47 2 1 dfgrlic2 S V G V S 𝑙𝑔𝑟 G g g : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w
48 47 ancoms G V S V S 𝑙𝑔𝑟 G g g : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w
49 48 3ad2ant3 f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph G V S V S 𝑙𝑔𝑟 G g g : Vtx S 1-1 onto Vtx G w Vtx S S ISubGr S ClNeighbVtx w 𝑔𝑟 G ISubGr G ClNeighbVtx g w
50 46 49 mpbird f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph G V S V S 𝑙𝑔𝑟 G
51 50 3exp f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G UHGraph G V S V S 𝑙𝑔𝑟 G
52 51 com23 f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G V S V G UHGraph S 𝑙𝑔𝑟 G
53 52 exlimiv f f : Vtx G 1-1 onto Vtx S v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 S ISubGr S ClNeighbVtx f v G V S V G UHGraph S 𝑙𝑔𝑟 G
54 3 4 53 sylc G 𝑙𝑔𝑟 S G UHGraph S 𝑙𝑔𝑟 G
55 54 com12 G UHGraph G 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 G