Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrlic2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfgrlic2.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
dfgrlic3.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
4 |
|
dfgrlic3.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
5 |
|
grilcbri2.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) |
6 |
|
grilcbri2.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑋 ) ) |
7 |
|
grilcbri2.k |
⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } |
8 |
|
grilcbri2.l |
⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } |
9 |
|
brgrlic |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ) |
10 |
|
grlimdmrel |
⊢ Rel dom GraphLocIso |
11 |
10
|
ovprc |
⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 GraphLocIso 𝐻 ) = ∅ ) |
12 |
11
|
necon1ai |
⊢ ( ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
13 |
9 12
|
sylbi |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
14 |
|
eqid |
⊢ ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 ) |
15 |
|
eqid |
⊢ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) |
16 |
|
eqid |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } |
17 |
|
eqid |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } |
18 |
1 2 3 4 14 15 16 17
|
dfgrlic3 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
19 |
|
eqidd |
⊢ ( 𝑣 = 𝑋 → 𝑗 = 𝑗 ) |
20 |
|
oveq2 |
⊢ ( 𝑣 = 𝑋 → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑋 ) ) |
21 |
20 5
|
eqtr4di |
⊢ ( 𝑣 = 𝑋 → ( 𝐺 ClNeighbVtx 𝑣 ) = 𝑁 ) |
22 |
|
fveq2 |
⊢ ( 𝑣 = 𝑋 → ( 𝑓 ‘ 𝑣 ) = ( 𝑓 ‘ 𝑋 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑣 = 𝑋 → ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑋 ) ) ) |
24 |
23 6
|
eqtr4di |
⊢ ( 𝑣 = 𝑋 → ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = 𝑀 ) |
25 |
19 21 24
|
f1oeq123d |
⊢ ( 𝑣 = 𝑋 → ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ↔ 𝑗 : 𝑁 –1-1-onto→ 𝑀 ) ) |
26 |
|
eqidd |
⊢ ( 𝑣 = 𝑋 → 𝑔 = 𝑔 ) |
27 |
21
|
sseq2d |
⊢ ( 𝑣 = 𝑋 → ( ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 ) ) |
28 |
27
|
rabbidv |
⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) |
29 |
28 7
|
eqtr4di |
⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = 𝐾 ) |
30 |
24
|
sseq2d |
⊢ ( 𝑣 = 𝑋 → ( ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ↔ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 ) ) |
31 |
30
|
rabbidv |
⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) |
32 |
31 8
|
eqtr4di |
⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } = 𝐿 ) |
33 |
26 29 32
|
f1oeq123d |
⊢ ( 𝑣 = 𝑋 → ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ↔ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) |
34 |
29
|
raleqdv |
⊢ ( 𝑣 = 𝑋 → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
35 |
33 34
|
anbi12d |
⊢ ( 𝑣 = 𝑋 → ( ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
36 |
35
|
exbidv |
⊢ ( 𝑣 = 𝑋 → ( ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
37 |
25 36
|
anbi12d |
⊢ ( 𝑣 = 𝑋 → ( ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
38 |
37
|
exbidv |
⊢ ( 𝑣 = 𝑋 → ( ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
39 |
38
|
rspcv |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
40 |
39
|
com12 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
41 |
40
|
a1i |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
42 |
41
|
anim2d |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) ) |
43 |
42
|
eximdv |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) ) |
44 |
18 43
|
sylbid |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) ) |
45 |
13 44
|
mpcom |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |