Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grplactf1o
Metamath Proof Explorer
Description: The left group action of element A of group G maps the
underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman , 18-Mar-2008) (Proof shortened by Mario Carneiro , 14-Aug-2015)
Ref
Expression
Hypotheses
grplact.1
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
grplact.2
⊢ 𝑋 = ( Base ‘ 𝐺 )
grplact.3
⊢ + = ( +g ‘ 𝐺 )
Assertion
grplactf1o
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1 -onto → 𝑋 )
Proof
Step
Hyp
Ref
Expression
1
grplact.1
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
2
grplact.2
⊢ 𝑋 = ( Base ‘ 𝐺 )
3
grplact.3
⊢ + = ( +g ‘ 𝐺 )
4
eqid
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 )
5
1 2 3 4
grplactcnv
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1 -onto → 𝑋 ∧ ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) )
6
5
simpld
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1 -onto → 𝑋 )