| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpasscan1.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
grpasscan1.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
| 3 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 4 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
| 5 |
1 4 2
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) |
| 6 |
3 5
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) |
| 7 |
1 4 2
|
grpolinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 8 |
6 7
|
eqtr4d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ) |
| 9 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
| 10 |
3 9
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
| 11 |
|
simpr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 12 |
10 11 3
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) |
| 13 |
1
|
grpolcan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) = 𝐴 ) ) |
| 14 |
12 13
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) = 𝐴 ) ) |
| 15 |
8 14
|
mpbid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) = 𝐴 ) |