Metamath Proof Explorer


Theorem grpo2inv

Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = ( inv ‘ 𝐺 )
Assertion grpo2inv ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑁 ‘ ( 𝑁𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 grpasscan1.1 𝑋 = ran 𝐺
2 grpasscan1.2 𝑁 = ( inv ‘ 𝐺 )
3 1 2 grpoinvcl ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ 𝑋 )
4 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
5 1 4 2 grporinv ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁𝐴 ) ∈ 𝑋 ) → ( ( 𝑁𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁𝐴 ) ) ) = ( GId ‘ 𝐺 ) )
6 3 5 syldan ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁𝐴 ) ) ) = ( GId ‘ 𝐺 ) )
7 1 4 2 grpolinv ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) )
8 6 7 eqtr4d ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁𝐴 ) ) ) = ( ( 𝑁𝐴 ) 𝐺 𝐴 ) )
9 1 2 grpoinvcl ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁𝐴 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁𝐴 ) ) ∈ 𝑋 )
10 3 9 syldan ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑁 ‘ ( 𝑁𝐴 ) ) ∈ 𝑋 )
11 simpr ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → 𝐴𝑋 )
12 10 11 3 3jca ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( ( 𝑁 ‘ ( 𝑁𝐴 ) ) ∈ 𝑋𝐴𝑋 ∧ ( 𝑁𝐴 ) ∈ 𝑋 ) )
13 1 grpolcan ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝑁 ‘ ( 𝑁𝐴 ) ) ∈ 𝑋𝐴𝑋 ∧ ( 𝑁𝐴 ) ∈ 𝑋 ) ) → ( ( ( 𝑁𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁𝐴 ) ) ) = ( ( 𝑁𝐴 ) 𝐺 𝐴 ) ↔ ( 𝑁 ‘ ( 𝑁𝐴 ) ) = 𝐴 ) )
14 12 13 syldan ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( ( ( 𝑁𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁𝐴 ) ) ) = ( ( 𝑁𝐴 ) 𝐺 𝐴 ) ↔ ( 𝑁 ‘ ( 𝑁𝐴 ) ) = 𝐴 ) )
15 8 14 mpbid ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑁 ‘ ( 𝑁𝐴 ) ) = 𝐴 )