Metamath Proof Explorer


Theorem grpstr

Description: A constructed group is a structure on 1 ... 2 . Depending on hard-coded index values. Use grpstrndx instead. (Contributed by Mario Carneiro, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypothesis grpfn.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ }
Assertion grpstr 𝐺 Struct ⟨ 1 , 2 ⟩

Proof

Step Hyp Ref Expression
1 grpfn.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ }
2 df-plusg +g = Slot 2
3 1lt2 1 < 2
4 2nn 2 ∈ ℕ
5 1 2 3 4 2strstr 𝐺 Struct ⟨ 1 , 2 ⟩