Metamath Proof Explorer


Theorem grpstr

Description: A constructed group is a structure on 1 ... 2 . Depending on hard-coded index values. Use grpstrndx instead. (Contributed by Mario Carneiro, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypothesis grpfn.g
|- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
Assertion grpstr
|- G Struct <. 1 , 2 >.

Proof

Step Hyp Ref Expression
1 grpfn.g
 |-  G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
2 df-plusg
 |-  +g = Slot 2
3 1lt2
 |-  1 < 2
4 2nn
 |-  2 e. NN
5 1 2 3 4 2strstr
 |-  G Struct <. 1 , 2 >.