Metamath Proof Explorer


Theorem grpstrndx

Description: A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024)

Ref Expression
Hypothesis grpfn.g
|- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
Assertion grpstrndx
|- G Struct <. ( Base ` ndx ) , ( +g ` ndx ) >.

Proof

Step Hyp Ref Expression
1 grpfn.g
 |-  G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
2 basendxltplusgndx
 |-  ( Base ` ndx ) < ( +g ` ndx )
3 plusgndxnn
 |-  ( +g ` ndx ) e. NN
4 1 2 3 2strstr1
 |-  G Struct <. ( Base ` ndx ) , ( +g ` ndx ) >.