Description: A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfn.g | |- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
|
Assertion | grpstrndx | |- G Struct <. ( Base ` ndx ) , ( +g ` ndx ) >. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfn.g | |- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
|
2 | basendxltplusgndx | |- ( Base ` ndx ) < ( +g ` ndx ) |
|
3 | plusgndxnn | |- ( +g ` ndx ) e. NN |
|
4 | 1 2 3 | 2strstr1 | |- G Struct <. ( Base ` ndx ) , ( +g ` ndx ) >. |