Metamath Proof Explorer


Theorem grpbase

Description: The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by AV, 27-Oct-2024)

Ref Expression
Hypothesis grpfn.g
|- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
Assertion grpbase
|- ( B e. V -> B = ( Base ` G ) )

Proof

Step Hyp Ref Expression
1 grpfn.g
 |-  G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
2 basendxltplusgndx
 |-  ( Base ` ndx ) < ( +g ` ndx )
3 plusgndxnn
 |-  ( +g ` ndx ) e. NN
4 1 2 3 2strbas1
 |-  ( B e. V -> B = ( Base ` G ) )