Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Alexander van der Vekens Monoids (extension) Group sum operation (extension 1) gsumfsupp  
				
		 
		
			
		 
		Description:   A group sum of a family can be restricted to the support of that family
       without changing its value, provided that that support is finite.  This
       corresponds to the definition of an (infinite) product in Lang  p. 5,
       last two formulas.  (Contributed by AV , 27-Dec-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsumfsupp.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
					
						gsumfsupp.z ⊢   0    =  ( 0g  ‘ 𝐺  )  
					
						gsumfsupp.s ⊢  𝐼   =  ( 𝐹   supp   0   )  
					
						gsumfsupp.g ⊢  ( 𝜑   →  𝐺   ∈  CMnd )  
					
						gsumfsupp.a ⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
					
						gsumfsupp.f ⊢  ( 𝜑   →  𝐹  : 𝐴  ⟶ 𝐵  )  
					
						gsumfsupp.w ⊢  ( 𝜑   →  𝐹   finSupp   0   )  
				
					Assertion 
					gsumfsupp ⊢   ( 𝜑   →  ( 𝐺   Σg 𝐹   ↾  𝐼  ) )  =  ( 𝐺   Σg 𝐹  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsumfsupp.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
						
							2 
								
							 
							gsumfsupp.z ⊢   0    =  ( 0g  ‘ 𝐺  )  
						
							3 
								
							 
							gsumfsupp.s ⊢  𝐼   =  ( 𝐹   supp   0   )  
						
							4 
								
							 
							gsumfsupp.g ⊢  ( 𝜑   →  𝐺   ∈  CMnd )  
						
							5 
								
							 
							gsumfsupp.a ⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
						
							6 
								
							 
							gsumfsupp.f ⊢  ( 𝜑   →  𝐹  : 𝐴  ⟶ 𝐵  )  
						
							7 
								
							 
							gsumfsupp.w ⊢  ( 𝜑   →  𝐹   finSupp   0   )  
						
							8 
								3 
							 
							eqimss2i ⊢  ( 𝐹   supp   0   )  ⊆  𝐼   
						
							9 
								8 
							 
							a1i ⊢  ( 𝜑   →  ( 𝐹   supp   0   )  ⊆  𝐼  )  
						
							10 
								1  2  4  5  6  9  7 
							 
							gsumres ⊢  ( 𝜑   →  ( 𝐺   Σg 𝐹   ↾  𝐼  ) )  =  ( 𝐺   Σg 𝐹  ) )