Metamath Proof Explorer


Theorem gsumfsupp

Description: A group sum of a family can be restricted to the support of that family without changing its value, provided that that support is finite. This corresponds to the definition of an (infinite) product in Lang p. 5, last two formulas. (Contributed by AV, 27-Dec-2023)

Ref Expression
Hypotheses gsumfsupp.b 𝐵 = ( Base ‘ 𝐺 )
gsumfsupp.z 0 = ( 0g𝐺 )
gsumfsupp.s 𝐼 = ( 𝐹 supp 0 )
gsumfsupp.g ( 𝜑𝐺 ∈ CMnd )
gsumfsupp.a ( 𝜑𝐴𝑉 )
gsumfsupp.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumfsupp.w ( 𝜑𝐹 finSupp 0 )
Assertion gsumfsupp ( 𝜑 → ( 𝐺 Σg ( 𝐹𝐼 ) ) = ( 𝐺 Σg 𝐹 ) )

Proof

Step Hyp Ref Expression
1 gsumfsupp.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumfsupp.z 0 = ( 0g𝐺 )
3 gsumfsupp.s 𝐼 = ( 𝐹 supp 0 )
4 gsumfsupp.g ( 𝜑𝐺 ∈ CMnd )
5 gsumfsupp.a ( 𝜑𝐴𝑉 )
6 gsumfsupp.f ( 𝜑𝐹 : 𝐴𝐵 )
7 gsumfsupp.w ( 𝜑𝐹 finSupp 0 )
8 3 eqimss2i ( 𝐹 supp 0 ) ⊆ 𝐼
9 8 a1i ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐼 )
10 1 2 4 5 6 9 7 gsumres ( 𝜑 → ( 𝐺 Σg ( 𝐹𝐼 ) ) = ( 𝐺 Σg 𝐹 ) )