| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsuminv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsuminv.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsuminv.p |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 4 |
|
gsuminv.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 5 |
|
gsuminv.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
gsuminv.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
gsuminv.n |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 8 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 10 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 12 |
1 3
|
invghm |
⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 13 |
4 12
|
sylib |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 14 |
|
ghmmhm |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 16 |
1 2 9 11 5 15 6 7
|
gsummhm |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |