Metamath Proof Explorer


Theorem gsuminv

Description: Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 4-May-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsuminv.b 𝐵 = ( Base ‘ 𝐺 )
gsuminv.z 0 = ( 0g𝐺 )
gsuminv.p 𝐼 = ( invg𝐺 )
gsuminv.g ( 𝜑𝐺 ∈ Abel )
gsuminv.a ( 𝜑𝐴𝑉 )
gsuminv.f ( 𝜑𝐹 : 𝐴𝐵 )
gsuminv.n ( 𝜑𝐹 finSupp 0 )
Assertion gsuminv ( 𝜑 → ( 𝐺 Σg ( 𝐼𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 gsuminv.b 𝐵 = ( Base ‘ 𝐺 )
2 gsuminv.z 0 = ( 0g𝐺 )
3 gsuminv.p 𝐼 = ( invg𝐺 )
4 gsuminv.g ( 𝜑𝐺 ∈ Abel )
5 gsuminv.a ( 𝜑𝐴𝑉 )
6 gsuminv.f ( 𝜑𝐹 : 𝐴𝐵 )
7 gsuminv.n ( 𝜑𝐹 finSupp 0 )
8 ablcmn ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd )
9 4 8 syl ( 𝜑𝐺 ∈ CMnd )
10 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
11 9 10 syl ( 𝜑𝐺 ∈ Mnd )
12 1 3 invghm ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) )
13 4 12 sylib ( 𝜑𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) )
14 ghmmhm ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) )
15 13 14 syl ( 𝜑𝐼 ∈ ( 𝐺 MndHom 𝐺 ) )
16 1 2 9 11 5 15 6 7 gsummhm ( 𝜑 → ( 𝐺 Σg ( 𝐼𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) )