Metamath Proof Explorer


Theorem gsummptfidmsub

Description: The difference of two group sums expressed as mappings with finite domain. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses gsummptfidmsub.b 𝐵 = ( Base ‘ 𝐺 )
gsummptfidmsub.s = ( -g𝐺 )
gsummptfidmsub.g ( 𝜑𝐺 ∈ Abel )
gsummptfidmsub.a ( 𝜑𝐴 ∈ Fin )
gsummptfidmsub.c ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
gsummptfidmsub.d ( ( 𝜑𝑥𝐴 ) → 𝐷𝐵 )
gsummptfidmsub.f 𝐹 = ( 𝑥𝐴𝐶 )
gsummptfidmsub.h 𝐻 = ( 𝑥𝐴𝐷 )
Assertion gsummptfidmsub ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴 ↦ ( 𝐶 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfidmsub.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptfidmsub.s = ( -g𝐺 )
3 gsummptfidmsub.g ( 𝜑𝐺 ∈ Abel )
4 gsummptfidmsub.a ( 𝜑𝐴 ∈ Fin )
5 gsummptfidmsub.c ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
6 gsummptfidmsub.d ( ( 𝜑𝑥𝐴 ) → 𝐷𝐵 )
7 gsummptfidmsub.f 𝐹 = ( 𝑥𝐴𝐶 )
8 gsummptfidmsub.h 𝐻 = ( 𝑥𝐴𝐷 )
9 eqid ( 0g𝐺 ) = ( 0g𝐺 )
10 7 a1i ( 𝜑𝐹 = ( 𝑥𝐴𝐶 ) )
11 8 a1i ( 𝜑𝐻 = ( 𝑥𝐴𝐷 ) )
12 fvexd ( 𝜑 → ( 0g𝐺 ) ∈ V )
13 7 4 5 12 fsuppmptdm ( 𝜑𝐹 finSupp ( 0g𝐺 ) )
14 8 4 6 12 fsuppmptdm ( 𝜑𝐻 finSupp ( 0g𝐺 ) )
15 1 9 2 3 4 5 6 10 11 13 14 gsummptfssub ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴 ↦ ( 𝐶 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )