Description: Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
gsummulg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
gsummulg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
gsummulg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
gsummulg.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
gsummulg.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
gsummulgz.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
gsummulgz.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
Assertion | gsummulgz | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | gsummulg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
3 | gsummulg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
4 | gsummulg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
5 | gsummulg.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
6 | gsummulg.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
7 | gsummulgz.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
8 | gsummulgz.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
9 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
10 | 7 9 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
11 | 7 | orcd | ⊢ ( 𝜑 → ( 𝐺 ∈ Abel ∨ 𝑁 ∈ ℕ0 ) ) |
12 | 1 2 3 4 5 6 10 8 11 | gsummulglem | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |