Description: Commutative law for the adders sum. (Contributed by Mario Carneiro, 4-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | hadcomb | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜑 , 𝜒 , 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid | ⊢ ( 𝜑 ↔ 𝜑 ) | |
2 | xorcom | ⊢ ( ( 𝜓 ⊻ 𝜒 ) ↔ ( 𝜒 ⊻ 𝜓 ) ) | |
3 | 1 2 | xorbi12i | ⊢ ( ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ↔ ( 𝜑 ⊻ ( 𝜒 ⊻ 𝜓 ) ) ) |
4 | hadass | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ) | |
5 | hadass | ⊢ ( hadd ( 𝜑 , 𝜒 , 𝜓 ) ↔ ( 𝜑 ⊻ ( 𝜒 ⊻ 𝜓 ) ) ) | |
6 | 3 4 5 | 3bitr4i | ⊢ ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜑 , 𝜒 , 𝜓 ) ) |