Metamath Proof Explorer


Theorem hadcomb

Description: Commutative law for the adders sum. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion hadcomb ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜑 , 𝜒 , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 biid ( 𝜑𝜑 )
2 xorcom ( ( 𝜓𝜒 ) ↔ ( 𝜒𝜓 ) )
3 1 2 xorbi12i ( ( 𝜑 ⊻ ( 𝜓𝜒 ) ) ↔ ( 𝜑 ⊻ ( 𝜒𝜓 ) ) )
4 hadass ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓𝜒 ) ) )
5 hadass ( hadd ( 𝜑 , 𝜒 , 𝜓 ) ↔ ( 𝜑 ⊻ ( 𝜒𝜓 ) ) )
6 3 4 5 3bitr4i ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜑 , 𝜒 , 𝜓 ) )