Metamath Proof Explorer


Theorem hashscontpowcl

Description: Closure of E for https://www3.nd.edu/%7eandyp/notes/AKS.pdf Theorem 6.1. (Contributed by metakunt, 28-Apr-2025)

Ref Expression
Hypotheses hashscontpowcl.1 ( 𝜑𝑁 ∈ ℕ )
hashscontpowcl.2 ( 𝜑𝑃 ∈ ℙ )
hashscontpowcl.3 ( 𝜑𝑃𝑁 )
hashscontpowcl.4 ( 𝜑𝑅 ∈ ℕ )
hashscontpowcl.5 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
hashscontpowcl.6 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
hashscontpowcl.7 𝐿 = ( ℤRHom ‘ 𝑌 )
hashscontpowcl.8 𝑌 = ( ℤ/nℤ ‘ 𝑅 )
Assertion hashscontpowcl ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 hashscontpowcl.1 ( 𝜑𝑁 ∈ ℕ )
2 hashscontpowcl.2 ( 𝜑𝑃 ∈ ℙ )
3 hashscontpowcl.3 ( 𝜑𝑃𝑁 )
4 hashscontpowcl.4 ( 𝜑𝑅 ∈ ℕ )
5 hashscontpowcl.5 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
6 hashscontpowcl.6 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
7 hashscontpowcl.7 𝐿 = ( ℤRHom ‘ 𝑌 )
8 hashscontpowcl.8 𝑌 = ( ℤ/nℤ ‘ 𝑅 )
9 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
10 8 9 znfi ( 𝑅 ∈ ℕ → ( Base ‘ 𝑌 ) ∈ Fin )
11 4 10 syl ( 𝜑 → ( Base ‘ 𝑌 ) ∈ Fin )
12 4 nnnn0d ( 𝜑𝑅 ∈ ℕ0 )
13 8 zncrng ( 𝑅 ∈ ℕ0𝑌 ∈ CRing )
14 12 13 syl ( 𝜑𝑌 ∈ CRing )
15 crngring ( 𝑌 ∈ CRing → 𝑌 ∈ Ring )
16 14 15 syl ( 𝜑𝑌 ∈ Ring )
17 7 zrhrhm ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) )
18 zringbas ℤ = ( Base ‘ ℤring )
19 18 9 rhmf ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) )
20 fimass ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ⊆ ( Base ‘ 𝑌 ) )
21 16 17 19 20 4syl ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ⊆ ( Base ‘ 𝑌 ) )
22 11 21 ssfid ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin )
23 hashcl ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 )
24 22 23 syl ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 )