Step |
Hyp |
Ref |
Expression |
1 |
|
hashscontpowcl.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
hashscontpowcl.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
3 |
|
hashscontpowcl.3 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
4 |
|
hashscontpowcl.4 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
5 |
|
hashscontpowcl.5 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
6 |
|
hashscontpowcl.6 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
7 |
|
hashscontpowcl.7 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
8 |
|
hashscontpowcl.8 |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
10 |
8 9
|
znfi |
⊢ ( 𝑅 ∈ ℕ → ( Base ‘ 𝑌 ) ∈ Fin ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) ∈ Fin ) |
12 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
13 |
8
|
zncrng |
⊢ ( 𝑅 ∈ ℕ0 → 𝑌 ∈ CRing ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
15 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
17 |
7
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
18 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
19 |
18 9
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
20 |
|
fimass |
⊢ ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ⊆ ( Base ‘ 𝑌 ) ) |
21 |
16 17 19 20
|
4syl |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ⊆ ( Base ‘ 𝑌 ) ) |
22 |
11 21
|
ssfid |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin ) |
23 |
|
hashcl |
⊢ ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |