| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashscontpowcl.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | hashscontpowcl.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | hashscontpowcl.3 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 4 |  | hashscontpowcl.4 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 5 |  | hashscontpowcl.5 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 6 |  | hashscontpowcl.6 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 7 |  | hashscontpowcl.7 | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 8 |  | hashscontpowcl.8 | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 10 | 8 9 | znfi | ⊢ ( 𝑅  ∈  ℕ  →  ( Base ‘ 𝑌 )  ∈  Fin ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  ∈  Fin ) | 
						
							| 12 | 4 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 13 | 8 | zncrng | ⊢ ( 𝑅  ∈  ℕ0  →  𝑌  ∈  CRing ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  𝑌  ∈  CRing ) | 
						
							| 15 |  | crngring | ⊢ ( 𝑌  ∈  CRing  →  𝑌  ∈  Ring ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Ring ) | 
						
							| 17 | 7 | zrhrhm | ⊢ ( 𝑌  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 18 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 19 | 18 9 | rhmf | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  𝑌 )  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 20 |  | fimass | ⊢ ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 )  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 21 | 16 17 19 20 | 4syl | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 22 | 11 21 | ssfid | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  Fin ) | 
						
							| 23 |  | hashcl | ⊢ ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  Fin  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) |