| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashscontpowcl.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
hashscontpowcl.2 |
|- ( ph -> P e. Prime ) |
| 3 |
|
hashscontpowcl.3 |
|- ( ph -> P || N ) |
| 4 |
|
hashscontpowcl.4 |
|- ( ph -> R e. NN ) |
| 5 |
|
hashscontpowcl.5 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 6 |
|
hashscontpowcl.6 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 7 |
|
hashscontpowcl.7 |
|- L = ( ZRHom ` Y ) |
| 8 |
|
hashscontpowcl.8 |
|- Y = ( Z/nZ ` R ) |
| 9 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 10 |
8 9
|
znfi |
|- ( R e. NN -> ( Base ` Y ) e. Fin ) |
| 11 |
4 10
|
syl |
|- ( ph -> ( Base ` Y ) e. Fin ) |
| 12 |
4
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
| 13 |
8
|
zncrng |
|- ( R e. NN0 -> Y e. CRing ) |
| 14 |
12 13
|
syl |
|- ( ph -> Y e. CRing ) |
| 15 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
| 16 |
14 15
|
syl |
|- ( ph -> Y e. Ring ) |
| 17 |
7
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 18 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 19 |
18 9
|
rhmf |
|- ( L e. ( ZZring RingHom Y ) -> L : ZZ --> ( Base ` Y ) ) |
| 20 |
|
fimass |
|- ( L : ZZ --> ( Base ` Y ) -> ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Base ` Y ) ) |
| 21 |
16 17 19 20
|
4syl |
|- ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Base ` Y ) ) |
| 22 |
11 21
|
ssfid |
|- ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin ) |
| 23 |
|
hashcl |
|- ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |