| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashscontpowcl.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | hashscontpowcl.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | hashscontpowcl.3 |  |-  ( ph -> P || N ) | 
						
							| 4 |  | hashscontpowcl.4 |  |-  ( ph -> R e. NN ) | 
						
							| 5 |  | hashscontpowcl.5 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 6 |  | hashscontpowcl.6 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 7 |  | hashscontpowcl.7 |  |-  L = ( ZRHom ` Y ) | 
						
							| 8 |  | hashscontpowcl.8 |  |-  Y = ( Z/nZ ` R ) | 
						
							| 9 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 10 | 8 9 | znfi |  |-  ( R e. NN -> ( Base ` Y ) e. Fin ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> ( Base ` Y ) e. Fin ) | 
						
							| 12 | 4 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 13 | 8 | zncrng |  |-  ( R e. NN0 -> Y e. CRing ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> Y e. CRing ) | 
						
							| 15 |  | crngring |  |-  ( Y e. CRing -> Y e. Ring ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> Y e. Ring ) | 
						
							| 17 | 7 | zrhrhm |  |-  ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) | 
						
							| 18 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 19 | 18 9 | rhmf |  |-  ( L e. ( ZZring RingHom Y ) -> L : ZZ --> ( Base ` Y ) ) | 
						
							| 20 |  | fimass |  |-  ( L : ZZ --> ( Base ` Y ) -> ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Base ` Y ) ) | 
						
							| 21 | 16 17 19 20 | 4syl |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Base ` Y ) ) | 
						
							| 22 | 11 21 | ssfid |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin ) | 
						
							| 23 |  | hashcl |  |-  ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |