Metamath Proof Explorer


Theorem hashscontpow1

Description: Helper lemma for to prove inequality in Zr. (Contributed by metakunt, 28-Apr-2025)

Ref Expression
Hypotheses hashscontpow1.1
|- ( ph -> N e. NN )
hashscontpow1.2
|- ( ph -> A e. ( 1 ... ( ( odZ ` R ) ` N ) ) )
hashscontpow1.3
|- ( ph -> B e. ( 1 ... ( ( odZ ` R ) ` N ) ) )
hashscontpow1.4
|- ( ph -> R e. NN )
hashscontpow1.5
|- ( ph -> ( N gcd R ) = 1 )
hashscontpow1.6
|- L = ( ZRHom ` Y )
hashscontpow1.7
|- Y = ( Z/nZ ` R )
hashscontpow1.8
|- ( ph -> A < B )
Assertion hashscontpow1
|- ( ph -> ( L ` ( N ^ A ) ) =/= ( L ` ( N ^ B ) ) )

Proof

Step Hyp Ref Expression
1 hashscontpow1.1
 |-  ( ph -> N e. NN )
2 hashscontpow1.2
 |-  ( ph -> A e. ( 1 ... ( ( odZ ` R ) ` N ) ) )
3 hashscontpow1.3
 |-  ( ph -> B e. ( 1 ... ( ( odZ ` R ) ` N ) ) )
4 hashscontpow1.4
 |-  ( ph -> R e. NN )
5 hashscontpow1.5
 |-  ( ph -> ( N gcd R ) = 1 )
6 hashscontpow1.6
 |-  L = ( ZRHom ` Y )
7 hashscontpow1.7
 |-  Y = ( Z/nZ ` R )
8 hashscontpow1.8
 |-  ( ph -> A < B )
9 3 elfzelzd
 |-  ( ph -> B e. ZZ )
10 9 zred
 |-  ( ph -> B e. RR )
11 2 elfzelzd
 |-  ( ph -> A e. ZZ )
12 11 zred
 |-  ( ph -> A e. RR )
13 10 12 resubcld
 |-  ( ph -> ( B - A ) e. RR )
14 1 nnzd
 |-  ( ph -> N e. ZZ )
15 odzcl
 |-  ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) e. NN )
16 4 14 5 15 syl3anc
 |-  ( ph -> ( ( odZ ` R ) ` N ) e. NN )
17 16 nnred
 |-  ( ph -> ( ( odZ ` R ) ` N ) e. RR )
18 elfznn
 |-  ( A e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> A e. NN )
19 2 18 syl
 |-  ( ph -> A e. NN )
20 19 nnrpd
 |-  ( ph -> A e. RR+ )
21 10 20 ltsubrpd
 |-  ( ph -> ( B - A ) < B )
22 elfzle2
 |-  ( B e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> B <_ ( ( odZ ` R ) ` N ) )
23 3 22 syl
 |-  ( ph -> B <_ ( ( odZ ` R ) ` N ) )
24 13 10 17 21 23 ltletrd
 |-  ( ph -> ( B - A ) < ( ( odZ ` R ) ` N ) )
25 24 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) < ( ( odZ ` R ) ` N ) )
26 odzval
 |-  ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) )
27 4 14 5 26 syl3anc
 |-  ( ph -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) )
28 27 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) )
29 elrabi
 |-  ( j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> j e. NN )
30 29 adantl
 |-  ( ( ph /\ j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> j e. NN )
31 30 nnred
 |-  ( ( ph /\ j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> j e. RR )
32 31 ex
 |-  ( ph -> ( j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> j e. RR ) )
33 32 ssrdv
 |-  ( ph -> { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR )
34 33 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR )
35 1red
 |-  ( ph -> 1 e. RR )
36 simpr
 |-  ( ( ph /\ x = 1 ) -> x = 1 )
37 36 breq1d
 |-  ( ( ph /\ x = 1 ) -> ( x <_ y <-> 1 <_ y ) )
38 37 ralbidv
 |-  ( ( ph /\ x = 1 ) -> ( A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y <-> A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } 1 <_ y ) )
39 elrabi
 |-  ( y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> y e. NN )
40 39 adantl
 |-  ( ( ph /\ y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> y e. NN )
41 40 nnge1d
 |-  ( ( ph /\ y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> 1 <_ y )
42 41 ralrimiva
 |-  ( ph -> A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } 1 <_ y )
43 35 38 42 rspcedvd
 |-  ( ph -> E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y )
44 43 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y )
45 oveq2
 |-  ( i = ( B - A ) -> ( N ^ i ) = ( N ^ ( B - A ) ) )
46 45 oveq1d
 |-  ( i = ( B - A ) -> ( ( N ^ i ) - 1 ) = ( ( N ^ ( B - A ) ) - 1 ) )
47 46 breq2d
 |-  ( i = ( B - A ) -> ( R || ( ( N ^ i ) - 1 ) <-> R || ( ( N ^ ( B - A ) ) - 1 ) ) )
48 9 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> B e. ZZ )
49 11 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> A e. ZZ )
50 48 49 zsubcld
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. ZZ )
51 12 10 posdifd
 |-  ( ph -> ( A < B <-> 0 < ( B - A ) ) )
52 8 51 mpbid
 |-  ( ph -> 0 < ( B - A ) )
53 52 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> 0 < ( B - A ) )
54 50 53 jca
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( B - A ) e. ZZ /\ 0 < ( B - A ) ) )
55 elnnz
 |-  ( ( B - A ) e. NN <-> ( ( B - A ) e. ZZ /\ 0 < ( B - A ) ) )
56 54 55 sylibr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. NN )
57 4 nnzd
 |-  ( ph -> R e. ZZ )
58 57 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R e. ZZ )
59 14 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> N e. ZZ )
60 19 nnnn0d
 |-  ( ph -> A e. NN0 )
61 60 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> A e. NN0 )
62 59 61 zexpcld
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ A ) e. ZZ )
63 56 nnnn0d
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. NN0 )
64 59 63 zexpcld
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ ( B - A ) ) e. ZZ )
65 1zzd
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> 1 e. ZZ )
66 64 65 zsubcld
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( N ^ ( B - A ) ) - 1 ) e. ZZ )
67 58 62 66 3jca
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) )
68 simpr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) )
69 68 eqcomd
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) )
70 4 nnnn0d
 |-  ( ph -> R e. NN0 )
71 70 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R e. NN0 )
72 elfznn
 |-  ( B e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> B e. NN )
73 3 72 syl
 |-  ( ph -> B e. NN )
74 73 nnnn0d
 |-  ( ph -> B e. NN0 )
75 14 74 zexpcld
 |-  ( ph -> ( N ^ B ) e. ZZ )
76 75 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ B ) e. ZZ )
77 7 6 zndvds
 |-  ( ( R e. NN0 /\ ( N ^ B ) e. ZZ /\ ( N ^ A ) e. ZZ ) -> ( ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) <-> R || ( ( N ^ B ) - ( N ^ A ) ) ) )
78 71 76 62 77 syl3anc
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) <-> R || ( ( N ^ B ) - ( N ^ A ) ) ) )
79 69 78 mpbid
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ B ) - ( N ^ A ) ) )
80 14 60 zexpcld
 |-  ( ph -> ( N ^ A ) e. ZZ )
81 80 zcnd
 |-  ( ph -> ( N ^ A ) e. CC )
82 9 11 zsubcld
 |-  ( ph -> ( B - A ) e. ZZ )
83 0red
 |-  ( ph -> 0 e. RR )
84 83 13 52 ltled
 |-  ( ph -> 0 <_ ( B - A ) )
85 82 84 jca
 |-  ( ph -> ( ( B - A ) e. ZZ /\ 0 <_ ( B - A ) ) )
86 elnn0z
 |-  ( ( B - A ) e. NN0 <-> ( ( B - A ) e. ZZ /\ 0 <_ ( B - A ) ) )
87 85 86 sylibr
 |-  ( ph -> ( B - A ) e. NN0 )
88 14 87 zexpcld
 |-  ( ph -> ( N ^ ( B - A ) ) e. ZZ )
89 88 zcnd
 |-  ( ph -> ( N ^ ( B - A ) ) e. CC )
90 1cnd
 |-  ( ph -> 1 e. CC )
91 81 89 90 subdid
 |-  ( ph -> ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) = ( ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) - ( ( N ^ A ) x. 1 ) ) )
92 12 recnd
 |-  ( ph -> A e. CC )
93 10 recnd
 |-  ( ph -> B e. CC )
94 92 93 pncan3d
 |-  ( ph -> ( A + ( B - A ) ) = B )
95 94 eqcomd
 |-  ( ph -> B = ( A + ( B - A ) ) )
96 95 oveq2d
 |-  ( ph -> ( N ^ B ) = ( N ^ ( A + ( B - A ) ) ) )
97 1 nncnd
 |-  ( ph -> N e. CC )
98 97 87 60 expaddd
 |-  ( ph -> ( N ^ ( A + ( B - A ) ) ) = ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) )
99 96 98 eqtrd
 |-  ( ph -> ( N ^ B ) = ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) )
100 99 eqcomd
 |-  ( ph -> ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) = ( N ^ B ) )
101 81 mulridd
 |-  ( ph -> ( ( N ^ A ) x. 1 ) = ( N ^ A ) )
102 100 101 oveq12d
 |-  ( ph -> ( ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) - ( ( N ^ A ) x. 1 ) ) = ( ( N ^ B ) - ( N ^ A ) ) )
103 91 102 eqtr2d
 |-  ( ph -> ( ( N ^ B ) - ( N ^ A ) ) = ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) )
104 103 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( N ^ B ) - ( N ^ A ) ) = ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) )
105 79 104 breqtrd
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) )
106 57 80 gcdcomd
 |-  ( ph -> ( R gcd ( N ^ A ) ) = ( ( N ^ A ) gcd R ) )
107 rpexp
 |-  ( ( N e. ZZ /\ R e. ZZ /\ A e. NN ) -> ( ( ( N ^ A ) gcd R ) = 1 <-> ( N gcd R ) = 1 ) )
108 14 57 19 107 syl3anc
 |-  ( ph -> ( ( ( N ^ A ) gcd R ) = 1 <-> ( N gcd R ) = 1 ) )
109 5 108 mpbird
 |-  ( ph -> ( ( N ^ A ) gcd R ) = 1 )
110 106 109 eqtrd
 |-  ( ph -> ( R gcd ( N ^ A ) ) = 1 )
111 110 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R gcd ( N ^ A ) ) = 1 )
112 105 111 jca
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) )
113 coprmdvds
 |-  ( ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) -> ( ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) -> R || ( ( N ^ ( B - A ) ) - 1 ) ) )
114 113 imp
 |-  ( ( ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) /\ ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) ) -> R || ( ( N ^ ( B - A ) ) - 1 ) )
115 67 112 114 syl2anc
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ ( B - A ) ) - 1 ) )
116 47 56 115 elrabd
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. { i e. NN | R || ( ( N ^ i ) - 1 ) } )
117 infrelb
 |-  ( ( { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR /\ E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y /\ ( B - A ) e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) <_ ( B - A ) )
118 34 44 116 117 syl3anc
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) <_ ( B - A ) )
119 28 118 eqbrtrd
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) <_ ( B - A ) )
120 16 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) e. NN )
121 120 nnred
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) e. RR )
122 13 adantr
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. RR )
123 121 122 lenltd
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( ( odZ ` R ) ` N ) <_ ( B - A ) <-> -. ( B - A ) < ( ( odZ ` R ) ` N ) ) )
124 119 123 mpbid
 |-  ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> -. ( B - A ) < ( ( odZ ` R ) ` N ) )
125 25 124 pm2.65da
 |-  ( ph -> -. ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) )
126 125 neqned
 |-  ( ph -> ( L ` ( N ^ A ) ) =/= ( L ` ( N ^ B ) ) )