Step |
Hyp |
Ref |
Expression |
1 |
|
hashscontpow1.1 |
|- ( ph -> N e. NN ) |
2 |
|
hashscontpow1.2 |
|- ( ph -> A e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
3 |
|
hashscontpow1.3 |
|- ( ph -> B e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
4 |
|
hashscontpow1.4 |
|- ( ph -> R e. NN ) |
5 |
|
hashscontpow1.5 |
|- ( ph -> ( N gcd R ) = 1 ) |
6 |
|
hashscontpow1.6 |
|- L = ( ZRHom ` Y ) |
7 |
|
hashscontpow1.7 |
|- Y = ( Z/nZ ` R ) |
8 |
|
hashscontpow1.8 |
|- ( ph -> A < B ) |
9 |
3
|
elfzelzd |
|- ( ph -> B e. ZZ ) |
10 |
9
|
zred |
|- ( ph -> B e. RR ) |
11 |
2
|
elfzelzd |
|- ( ph -> A e. ZZ ) |
12 |
11
|
zred |
|- ( ph -> A e. RR ) |
13 |
10 12
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
14 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
15 |
|
odzcl |
|- ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) e. NN ) |
16 |
4 14 5 15
|
syl3anc |
|- ( ph -> ( ( odZ ` R ) ` N ) e. NN ) |
17 |
16
|
nnred |
|- ( ph -> ( ( odZ ` R ) ` N ) e. RR ) |
18 |
|
elfznn |
|- ( A e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> A e. NN ) |
19 |
2 18
|
syl |
|- ( ph -> A e. NN ) |
20 |
19
|
nnrpd |
|- ( ph -> A e. RR+ ) |
21 |
10 20
|
ltsubrpd |
|- ( ph -> ( B - A ) < B ) |
22 |
|
elfzle2 |
|- ( B e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> B <_ ( ( odZ ` R ) ` N ) ) |
23 |
3 22
|
syl |
|- ( ph -> B <_ ( ( odZ ` R ) ` N ) ) |
24 |
13 10 17 21 23
|
ltletrd |
|- ( ph -> ( B - A ) < ( ( odZ ` R ) ` N ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) < ( ( odZ ` R ) ` N ) ) |
26 |
|
odzval |
|- ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) ) |
27 |
4 14 5 26
|
syl3anc |
|- ( ph -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) ) |
29 |
|
elrabi |
|- ( j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> j e. NN ) |
30 |
29
|
adantl |
|- ( ( ph /\ j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> j e. NN ) |
31 |
30
|
nnred |
|- ( ( ph /\ j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> j e. RR ) |
32 |
31
|
ex |
|- ( ph -> ( j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> j e. RR ) ) |
33 |
32
|
ssrdv |
|- ( ph -> { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR ) |
35 |
|
1red |
|- ( ph -> 1 e. RR ) |
36 |
|
simpr |
|- ( ( ph /\ x = 1 ) -> x = 1 ) |
37 |
36
|
breq1d |
|- ( ( ph /\ x = 1 ) -> ( x <_ y <-> 1 <_ y ) ) |
38 |
37
|
ralbidv |
|- ( ( ph /\ x = 1 ) -> ( A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y <-> A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } 1 <_ y ) ) |
39 |
|
elrabi |
|- ( y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> y e. NN ) |
40 |
39
|
adantl |
|- ( ( ph /\ y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> y e. NN ) |
41 |
40
|
nnge1d |
|- ( ( ph /\ y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> 1 <_ y ) |
42 |
41
|
ralrimiva |
|- ( ph -> A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } 1 <_ y ) |
43 |
35 38 42
|
rspcedvd |
|- ( ph -> E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y ) |
45 |
|
oveq2 |
|- ( i = ( B - A ) -> ( N ^ i ) = ( N ^ ( B - A ) ) ) |
46 |
45
|
oveq1d |
|- ( i = ( B - A ) -> ( ( N ^ i ) - 1 ) = ( ( N ^ ( B - A ) ) - 1 ) ) |
47 |
46
|
breq2d |
|- ( i = ( B - A ) -> ( R || ( ( N ^ i ) - 1 ) <-> R || ( ( N ^ ( B - A ) ) - 1 ) ) ) |
48 |
9
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> B e. ZZ ) |
49 |
11
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> A e. ZZ ) |
50 |
48 49
|
zsubcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. ZZ ) |
51 |
12 10
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
52 |
8 51
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
53 |
52
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> 0 < ( B - A ) ) |
54 |
50 53
|
jca |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( B - A ) e. ZZ /\ 0 < ( B - A ) ) ) |
55 |
|
elnnz |
|- ( ( B - A ) e. NN <-> ( ( B - A ) e. ZZ /\ 0 < ( B - A ) ) ) |
56 |
54 55
|
sylibr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. NN ) |
57 |
4
|
nnzd |
|- ( ph -> R e. ZZ ) |
58 |
57
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R e. ZZ ) |
59 |
14
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> N e. ZZ ) |
60 |
19
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
61 |
60
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> A e. NN0 ) |
62 |
59 61
|
zexpcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ A ) e. ZZ ) |
63 |
56
|
nnnn0d |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. NN0 ) |
64 |
59 63
|
zexpcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ ( B - A ) ) e. ZZ ) |
65 |
|
1zzd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> 1 e. ZZ ) |
66 |
64 65
|
zsubcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) |
67 |
58 62 66
|
3jca |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) ) |
68 |
|
simpr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) |
69 |
68
|
eqcomd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) ) |
70 |
4
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
71 |
70
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R e. NN0 ) |
72 |
|
elfznn |
|- ( B e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> B e. NN ) |
73 |
3 72
|
syl |
|- ( ph -> B e. NN ) |
74 |
73
|
nnnn0d |
|- ( ph -> B e. NN0 ) |
75 |
14 74
|
zexpcld |
|- ( ph -> ( N ^ B ) e. ZZ ) |
76 |
75
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ B ) e. ZZ ) |
77 |
7 6
|
zndvds |
|- ( ( R e. NN0 /\ ( N ^ B ) e. ZZ /\ ( N ^ A ) e. ZZ ) -> ( ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) <-> R || ( ( N ^ B ) - ( N ^ A ) ) ) ) |
78 |
71 76 62 77
|
syl3anc |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) <-> R || ( ( N ^ B ) - ( N ^ A ) ) ) ) |
79 |
69 78
|
mpbid |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ B ) - ( N ^ A ) ) ) |
80 |
14 60
|
zexpcld |
|- ( ph -> ( N ^ A ) e. ZZ ) |
81 |
80
|
zcnd |
|- ( ph -> ( N ^ A ) e. CC ) |
82 |
9 11
|
zsubcld |
|- ( ph -> ( B - A ) e. ZZ ) |
83 |
|
0red |
|- ( ph -> 0 e. RR ) |
84 |
83 13 52
|
ltled |
|- ( ph -> 0 <_ ( B - A ) ) |
85 |
82 84
|
jca |
|- ( ph -> ( ( B - A ) e. ZZ /\ 0 <_ ( B - A ) ) ) |
86 |
|
elnn0z |
|- ( ( B - A ) e. NN0 <-> ( ( B - A ) e. ZZ /\ 0 <_ ( B - A ) ) ) |
87 |
85 86
|
sylibr |
|- ( ph -> ( B - A ) e. NN0 ) |
88 |
14 87
|
zexpcld |
|- ( ph -> ( N ^ ( B - A ) ) e. ZZ ) |
89 |
88
|
zcnd |
|- ( ph -> ( N ^ ( B - A ) ) e. CC ) |
90 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
91 |
81 89 90
|
subdid |
|- ( ph -> ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) = ( ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) - ( ( N ^ A ) x. 1 ) ) ) |
92 |
12
|
recnd |
|- ( ph -> A e. CC ) |
93 |
10
|
recnd |
|- ( ph -> B e. CC ) |
94 |
92 93
|
pncan3d |
|- ( ph -> ( A + ( B - A ) ) = B ) |
95 |
94
|
eqcomd |
|- ( ph -> B = ( A + ( B - A ) ) ) |
96 |
95
|
oveq2d |
|- ( ph -> ( N ^ B ) = ( N ^ ( A + ( B - A ) ) ) ) |
97 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
98 |
97 87 60
|
expaddd |
|- ( ph -> ( N ^ ( A + ( B - A ) ) ) = ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) ) |
99 |
96 98
|
eqtrd |
|- ( ph -> ( N ^ B ) = ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) ) |
100 |
99
|
eqcomd |
|- ( ph -> ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) = ( N ^ B ) ) |
101 |
81
|
mulridd |
|- ( ph -> ( ( N ^ A ) x. 1 ) = ( N ^ A ) ) |
102 |
100 101
|
oveq12d |
|- ( ph -> ( ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) - ( ( N ^ A ) x. 1 ) ) = ( ( N ^ B ) - ( N ^ A ) ) ) |
103 |
91 102
|
eqtr2d |
|- ( ph -> ( ( N ^ B ) - ( N ^ A ) ) = ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) ) |
104 |
103
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( N ^ B ) - ( N ^ A ) ) = ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) ) |
105 |
79 104
|
breqtrd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) ) |
106 |
57 80
|
gcdcomd |
|- ( ph -> ( R gcd ( N ^ A ) ) = ( ( N ^ A ) gcd R ) ) |
107 |
|
rpexp |
|- ( ( N e. ZZ /\ R e. ZZ /\ A e. NN ) -> ( ( ( N ^ A ) gcd R ) = 1 <-> ( N gcd R ) = 1 ) ) |
108 |
14 57 19 107
|
syl3anc |
|- ( ph -> ( ( ( N ^ A ) gcd R ) = 1 <-> ( N gcd R ) = 1 ) ) |
109 |
5 108
|
mpbird |
|- ( ph -> ( ( N ^ A ) gcd R ) = 1 ) |
110 |
106 109
|
eqtrd |
|- ( ph -> ( R gcd ( N ^ A ) ) = 1 ) |
111 |
110
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R gcd ( N ^ A ) ) = 1 ) |
112 |
105 111
|
jca |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) ) |
113 |
|
coprmdvds |
|- ( ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) -> ( ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) -> R || ( ( N ^ ( B - A ) ) - 1 ) ) ) |
114 |
113
|
imp |
|- ( ( ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) /\ ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) ) -> R || ( ( N ^ ( B - A ) ) - 1 ) ) |
115 |
67 112 114
|
syl2anc |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ ( B - A ) ) - 1 ) ) |
116 |
47 56 115
|
elrabd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) |
117 |
|
infrelb |
|- ( ( { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR /\ E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y /\ ( B - A ) e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) <_ ( B - A ) ) |
118 |
34 44 116 117
|
syl3anc |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) <_ ( B - A ) ) |
119 |
28 118
|
eqbrtrd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) <_ ( B - A ) ) |
120 |
16
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) e. NN ) |
121 |
120
|
nnred |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) e. RR ) |
122 |
13
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. RR ) |
123 |
121 122
|
lenltd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( ( odZ ` R ) ` N ) <_ ( B - A ) <-> -. ( B - A ) < ( ( odZ ` R ) ` N ) ) ) |
124 |
119 123
|
mpbid |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> -. ( B - A ) < ( ( odZ ` R ) ` N ) ) |
125 |
25 124
|
pm2.65da |
|- ( ph -> -. ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) |
126 |
125
|
neqned |
|- ( ph -> ( L ` ( N ^ A ) ) =/= ( L ` ( N ^ B ) ) ) |