| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashscontpow1.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
hashscontpow1.2 |
|- ( ph -> A e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 3 |
|
hashscontpow1.3 |
|- ( ph -> B e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 4 |
|
hashscontpow1.4 |
|- ( ph -> R e. NN ) |
| 5 |
|
hashscontpow1.5 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 6 |
|
hashscontpow1.6 |
|- L = ( ZRHom ` Y ) |
| 7 |
|
hashscontpow1.7 |
|- Y = ( Z/nZ ` R ) |
| 8 |
|
hashscontpow1.8 |
|- ( ph -> A < B ) |
| 9 |
3
|
elfzelzd |
|- ( ph -> B e. ZZ ) |
| 10 |
9
|
zred |
|- ( ph -> B e. RR ) |
| 11 |
2
|
elfzelzd |
|- ( ph -> A e. ZZ ) |
| 12 |
11
|
zred |
|- ( ph -> A e. RR ) |
| 13 |
10 12
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 14 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 15 |
|
odzcl |
|- ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) e. NN ) |
| 16 |
4 14 5 15
|
syl3anc |
|- ( ph -> ( ( odZ ` R ) ` N ) e. NN ) |
| 17 |
16
|
nnred |
|- ( ph -> ( ( odZ ` R ) ` N ) e. RR ) |
| 18 |
|
elfznn |
|- ( A e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> A e. NN ) |
| 19 |
2 18
|
syl |
|- ( ph -> A e. NN ) |
| 20 |
19
|
nnrpd |
|- ( ph -> A e. RR+ ) |
| 21 |
10 20
|
ltsubrpd |
|- ( ph -> ( B - A ) < B ) |
| 22 |
|
elfzle2 |
|- ( B e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> B <_ ( ( odZ ` R ) ` N ) ) |
| 23 |
3 22
|
syl |
|- ( ph -> B <_ ( ( odZ ` R ) ` N ) ) |
| 24 |
13 10 17 21 23
|
ltletrd |
|- ( ph -> ( B - A ) < ( ( odZ ` R ) ` N ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) < ( ( odZ ` R ) ` N ) ) |
| 26 |
|
odzval |
|- ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) ) |
| 27 |
4 14 5 26
|
syl3anc |
|- ( ph -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) = inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) ) |
| 29 |
|
elrabi |
|- ( j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> j e. NN ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> j e. NN ) |
| 31 |
30
|
nnred |
|- ( ( ph /\ j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> j e. RR ) |
| 32 |
31
|
ex |
|- ( ph -> ( j e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> j e. RR ) ) |
| 33 |
32
|
ssrdv |
|- ( ph -> { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR ) |
| 35 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 36 |
|
simpr |
|- ( ( ph /\ x = 1 ) -> x = 1 ) |
| 37 |
36
|
breq1d |
|- ( ( ph /\ x = 1 ) -> ( x <_ y <-> 1 <_ y ) ) |
| 38 |
37
|
ralbidv |
|- ( ( ph /\ x = 1 ) -> ( A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y <-> A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } 1 <_ y ) ) |
| 39 |
|
elrabi |
|- ( y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } -> y e. NN ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> y e. NN ) |
| 41 |
40
|
nnge1d |
|- ( ( ph /\ y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> 1 <_ y ) |
| 42 |
41
|
ralrimiva |
|- ( ph -> A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } 1 <_ y ) |
| 43 |
35 38 42
|
rspcedvd |
|- ( ph -> E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y ) |
| 45 |
|
oveq2 |
|- ( i = ( B - A ) -> ( N ^ i ) = ( N ^ ( B - A ) ) ) |
| 46 |
45
|
oveq1d |
|- ( i = ( B - A ) -> ( ( N ^ i ) - 1 ) = ( ( N ^ ( B - A ) ) - 1 ) ) |
| 47 |
46
|
breq2d |
|- ( i = ( B - A ) -> ( R || ( ( N ^ i ) - 1 ) <-> R || ( ( N ^ ( B - A ) ) - 1 ) ) ) |
| 48 |
9
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> B e. ZZ ) |
| 49 |
11
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> A e. ZZ ) |
| 50 |
48 49
|
zsubcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. ZZ ) |
| 51 |
12 10
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 52 |
8 51
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> 0 < ( B - A ) ) |
| 54 |
50 53
|
jca |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( B - A ) e. ZZ /\ 0 < ( B - A ) ) ) |
| 55 |
|
elnnz |
|- ( ( B - A ) e. NN <-> ( ( B - A ) e. ZZ /\ 0 < ( B - A ) ) ) |
| 56 |
54 55
|
sylibr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. NN ) |
| 57 |
4
|
nnzd |
|- ( ph -> R e. ZZ ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R e. ZZ ) |
| 59 |
14
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> N e. ZZ ) |
| 60 |
19
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> A e. NN0 ) |
| 62 |
59 61
|
zexpcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ A ) e. ZZ ) |
| 63 |
56
|
nnnn0d |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. NN0 ) |
| 64 |
59 63
|
zexpcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ ( B - A ) ) e. ZZ ) |
| 65 |
|
1zzd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> 1 e. ZZ ) |
| 66 |
64 65
|
zsubcld |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) |
| 67 |
58 62 66
|
3jca |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) ) |
| 68 |
|
simpr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) |
| 69 |
68
|
eqcomd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) ) |
| 70 |
4
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R e. NN0 ) |
| 72 |
|
elfznn |
|- ( B e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> B e. NN ) |
| 73 |
3 72
|
syl |
|- ( ph -> B e. NN ) |
| 74 |
73
|
nnnn0d |
|- ( ph -> B e. NN0 ) |
| 75 |
14 74
|
zexpcld |
|- ( ph -> ( N ^ B ) e. ZZ ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( N ^ B ) e. ZZ ) |
| 77 |
7 6
|
zndvds |
|- ( ( R e. NN0 /\ ( N ^ B ) e. ZZ /\ ( N ^ A ) e. ZZ ) -> ( ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) <-> R || ( ( N ^ B ) - ( N ^ A ) ) ) ) |
| 78 |
71 76 62 77
|
syl3anc |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( L ` ( N ^ B ) ) = ( L ` ( N ^ A ) ) <-> R || ( ( N ^ B ) - ( N ^ A ) ) ) ) |
| 79 |
69 78
|
mpbid |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ B ) - ( N ^ A ) ) ) |
| 80 |
14 60
|
zexpcld |
|- ( ph -> ( N ^ A ) e. ZZ ) |
| 81 |
80
|
zcnd |
|- ( ph -> ( N ^ A ) e. CC ) |
| 82 |
9 11
|
zsubcld |
|- ( ph -> ( B - A ) e. ZZ ) |
| 83 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 84 |
83 13 52
|
ltled |
|- ( ph -> 0 <_ ( B - A ) ) |
| 85 |
82 84
|
jca |
|- ( ph -> ( ( B - A ) e. ZZ /\ 0 <_ ( B - A ) ) ) |
| 86 |
|
elnn0z |
|- ( ( B - A ) e. NN0 <-> ( ( B - A ) e. ZZ /\ 0 <_ ( B - A ) ) ) |
| 87 |
85 86
|
sylibr |
|- ( ph -> ( B - A ) e. NN0 ) |
| 88 |
14 87
|
zexpcld |
|- ( ph -> ( N ^ ( B - A ) ) e. ZZ ) |
| 89 |
88
|
zcnd |
|- ( ph -> ( N ^ ( B - A ) ) e. CC ) |
| 90 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 91 |
81 89 90
|
subdid |
|- ( ph -> ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) = ( ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) - ( ( N ^ A ) x. 1 ) ) ) |
| 92 |
12
|
recnd |
|- ( ph -> A e. CC ) |
| 93 |
10
|
recnd |
|- ( ph -> B e. CC ) |
| 94 |
92 93
|
pncan3d |
|- ( ph -> ( A + ( B - A ) ) = B ) |
| 95 |
94
|
eqcomd |
|- ( ph -> B = ( A + ( B - A ) ) ) |
| 96 |
95
|
oveq2d |
|- ( ph -> ( N ^ B ) = ( N ^ ( A + ( B - A ) ) ) ) |
| 97 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 98 |
97 87 60
|
expaddd |
|- ( ph -> ( N ^ ( A + ( B - A ) ) ) = ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) ) |
| 99 |
96 98
|
eqtrd |
|- ( ph -> ( N ^ B ) = ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) ) |
| 100 |
99
|
eqcomd |
|- ( ph -> ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) = ( N ^ B ) ) |
| 101 |
81
|
mulridd |
|- ( ph -> ( ( N ^ A ) x. 1 ) = ( N ^ A ) ) |
| 102 |
100 101
|
oveq12d |
|- ( ph -> ( ( ( N ^ A ) x. ( N ^ ( B - A ) ) ) - ( ( N ^ A ) x. 1 ) ) = ( ( N ^ B ) - ( N ^ A ) ) ) |
| 103 |
91 102
|
eqtr2d |
|- ( ph -> ( ( N ^ B ) - ( N ^ A ) ) = ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( N ^ B ) - ( N ^ A ) ) = ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) ) |
| 105 |
79 104
|
breqtrd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) ) |
| 106 |
57 80
|
gcdcomd |
|- ( ph -> ( R gcd ( N ^ A ) ) = ( ( N ^ A ) gcd R ) ) |
| 107 |
|
rpexp |
|- ( ( N e. ZZ /\ R e. ZZ /\ A e. NN ) -> ( ( ( N ^ A ) gcd R ) = 1 <-> ( N gcd R ) = 1 ) ) |
| 108 |
14 57 19 107
|
syl3anc |
|- ( ph -> ( ( ( N ^ A ) gcd R ) = 1 <-> ( N gcd R ) = 1 ) ) |
| 109 |
5 108
|
mpbird |
|- ( ph -> ( ( N ^ A ) gcd R ) = 1 ) |
| 110 |
106 109
|
eqtrd |
|- ( ph -> ( R gcd ( N ^ A ) ) = 1 ) |
| 111 |
110
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R gcd ( N ^ A ) ) = 1 ) |
| 112 |
105 111
|
jca |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) ) |
| 113 |
|
coprmdvds |
|- ( ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) -> ( ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) -> R || ( ( N ^ ( B - A ) ) - 1 ) ) ) |
| 114 |
113
|
imp |
|- ( ( ( R e. ZZ /\ ( N ^ A ) e. ZZ /\ ( ( N ^ ( B - A ) ) - 1 ) e. ZZ ) /\ ( R || ( ( N ^ A ) x. ( ( N ^ ( B - A ) ) - 1 ) ) /\ ( R gcd ( N ^ A ) ) = 1 ) ) -> R || ( ( N ^ ( B - A ) ) - 1 ) ) |
| 115 |
67 112 114
|
syl2anc |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> R || ( ( N ^ ( B - A ) ) - 1 ) ) |
| 116 |
47 56 115
|
elrabd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) |
| 117 |
|
infrelb |
|- ( ( { i e. NN | R || ( ( N ^ i ) - 1 ) } C_ RR /\ E. x e. RR A. y e. { i e. NN | R || ( ( N ^ i ) - 1 ) } x <_ y /\ ( B - A ) e. { i e. NN | R || ( ( N ^ i ) - 1 ) } ) -> inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) <_ ( B - A ) ) |
| 118 |
34 44 116 117
|
syl3anc |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> inf ( { i e. NN | R || ( ( N ^ i ) - 1 ) } , RR , < ) <_ ( B - A ) ) |
| 119 |
28 118
|
eqbrtrd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) <_ ( B - A ) ) |
| 120 |
16
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) e. NN ) |
| 121 |
120
|
nnred |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( odZ ` R ) ` N ) e. RR ) |
| 122 |
13
|
adantr |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( B - A ) e. RR ) |
| 123 |
121 122
|
lenltd |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> ( ( ( odZ ` R ) ` N ) <_ ( B - A ) <-> -. ( B - A ) < ( ( odZ ` R ) ` N ) ) ) |
| 124 |
119 123
|
mpbid |
|- ( ( ph /\ ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) -> -. ( B - A ) < ( ( odZ ` R ) ` N ) ) |
| 125 |
25 124
|
pm2.65da |
|- ( ph -> -. ( L ` ( N ^ A ) ) = ( L ` ( N ^ B ) ) ) |
| 126 |
125
|
neqned |
|- ( ph -> ( L ` ( N ^ A ) ) =/= ( L ` ( N ^ B ) ) ) |