| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashscontpow.1 |
|- ( ph -> E C_ ZZ ) |
| 2 |
|
hashscontpow.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
hashscontpow.3 |
|- ( ph -> A. k e. NN0 ( N ^ k ) e. E ) |
| 4 |
|
hashscontpow.4 |
|- ( ph -> R e. NN ) |
| 5 |
|
hashscontpow.5 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 6 |
|
hashscontpow.6 |
|- L = ( ZRHom ` Y ) |
| 7 |
|
hashscontpow.7 |
|- Y = ( Z/nZ ` R ) |
| 8 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 9 |
|
odzcl |
|- ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) e. NN ) |
| 10 |
4 8 5 9
|
syl3anc |
|- ( ph -> ( ( odZ ` R ) ` N ) e. NN ) |
| 11 |
10
|
nnnn0d |
|- ( ph -> ( ( odZ ` R ) ` N ) e. NN0 ) |
| 12 |
|
hashfz1 |
|- ( ( ( odZ ` R ) ` N ) e. NN0 -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) = ( ( odZ ` R ) ` N ) ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) = ( ( odZ ` R ) ` N ) ) |
| 14 |
|
ovexd |
|- ( ph -> ( 1 ... ( ( odZ ` R ) ` N ) ) e. _V ) |
| 15 |
14
|
mptexd |
|- ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) e. _V ) |
| 16 |
6
|
fvexi |
|- L e. _V |
| 17 |
16
|
a1i |
|- ( ph -> L e. _V ) |
| 18 |
|
imaexg |
|- ( L e. _V -> ( L " E ) e. _V ) |
| 19 |
17 18
|
syl |
|- ( ph -> ( L " E ) e. _V ) |
| 20 |
4
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
| 21 |
7
|
zncrng |
|- ( R e. NN0 -> Y e. CRing ) |
| 22 |
20 21
|
syl |
|- ( ph -> Y e. CRing ) |
| 23 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
| 24 |
6
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 25 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 26 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 27 |
25 26
|
rhmf |
|- ( L e. ( ZZring RingHom Y ) -> L : ZZ --> ( Base ` Y ) ) |
| 28 |
22 23 24 27
|
4syl |
|- ( ph -> L : ZZ --> ( Base ` Y ) ) |
| 29 |
28
|
ffnd |
|- ( ph -> L Fn ZZ ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> L Fn ZZ ) |
| 31 |
8
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> N e. ZZ ) |
| 32 |
|
elfznn |
|- ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> x e. NN ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> x e. NN ) |
| 34 |
33
|
nnnn0d |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> x e. NN0 ) |
| 35 |
31 34
|
zexpcld |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( N ^ x ) e. ZZ ) |
| 36 |
|
oveq2 |
|- ( k = x -> ( N ^ k ) = ( N ^ x ) ) |
| 37 |
36
|
eleq1d |
|- ( k = x -> ( ( N ^ k ) e. E <-> ( N ^ x ) e. E ) ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> A. k e. NN0 ( N ^ k ) e. E ) |
| 39 |
37 38 34
|
rspcdva |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( N ^ x ) e. E ) |
| 40 |
30 35 39
|
fnfvimad |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( L ` ( N ^ x ) ) e. ( L " E ) ) |
| 41 |
40
|
fmpttd |
|- ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) ) |
| 42 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> N e. NN ) |
| 43 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 44 |
|
simplr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 45 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> R e. NN ) |
| 46 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> ( N gcd R ) = 1 ) |
| 47 |
|
simpr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> a < b ) |
| 48 |
42 43 44 45 46 6 7 47
|
hashscontpow1 |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
| 49 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> N e. NN ) |
| 50 |
|
simplr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 51 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 52 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> R e. NN ) |
| 53 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( N gcd R ) = 1 ) |
| 54 |
|
simpr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> b < a ) |
| 55 |
49 50 51 52 53 6 7 54
|
hashscontpow1 |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( L ` ( N ^ b ) ) =/= ( L ` ( N ^ a ) ) ) |
| 56 |
55
|
necomd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
| 57 |
48 56
|
jaodan |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ ( a < b \/ b < a ) ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
| 58 |
57
|
ex |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( a < b \/ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) |
| 59 |
|
biidd |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( a = b <-> a = b ) ) |
| 60 |
59
|
necon3bbid |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b <-> a =/= b ) ) |
| 61 |
|
elfzelz |
|- ( a e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> a e. ZZ ) |
| 62 |
61
|
adantl |
|- ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. ZZ ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. ZZ ) |
| 64 |
63
|
zred |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. RR ) |
| 65 |
|
elfzelz |
|- ( b e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> b e. ZZ ) |
| 66 |
65
|
zred |
|- ( b e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> b e. RR ) |
| 67 |
66
|
adantl |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> b e. RR ) |
| 68 |
|
lttri2 |
|- ( ( a e. RR /\ b e. RR ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) |
| 69 |
64 67 68
|
syl2anc |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) |
| 70 |
60 69
|
bitrd |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b <-> ( a < b \/ b < a ) ) ) |
| 71 |
70
|
imbi1d |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( -. a = b -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) <-> ( ( a < b \/ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) ) |
| 72 |
58 71
|
mpbird |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) |
| 73 |
72
|
imp |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
| 74 |
|
eqidd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) = ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ) |
| 75 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> x = a ) |
| 76 |
75
|
oveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> ( N ^ x ) = ( N ^ a ) ) |
| 77 |
76
|
fveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> ( L ` ( N ^ x ) ) = ( L ` ( N ^ a ) ) ) |
| 78 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 79 |
|
fvexd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ a ) ) e. _V ) |
| 80 |
74 77 78 79
|
fvmptd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( L ` ( N ^ a ) ) ) |
| 81 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> x = b ) |
| 82 |
81
|
oveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> ( N ^ x ) = ( N ^ b ) ) |
| 83 |
82
|
fveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> ( L ` ( N ^ x ) ) = ( L ` ( N ^ b ) ) ) |
| 84 |
|
simplr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
| 85 |
|
fvexd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ b ) ) e. _V ) |
| 86 |
74 83 84 85
|
fvmptd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) = ( L ` ( N ^ b ) ) ) |
| 87 |
80 86
|
neeq12d |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) =/= ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) <-> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) |
| 88 |
73 87
|
mpbird |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) =/= ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) |
| 89 |
88
|
neneqd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> -. ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) |
| 90 |
89
|
ex |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b -> -. ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) ) |
| 91 |
90
|
con4d |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) |
| 92 |
91
|
ralrimiva |
|- ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) |
| 93 |
92
|
ralrimiva |
|- ( ph -> A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) |
| 94 |
41 93
|
jca |
|- ( ph -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) /\ A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) ) |
| 95 |
|
dff13 |
|- ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) <-> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) /\ A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) ) |
| 96 |
94 95
|
sylibr |
|- ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) ) |
| 97 |
|
hashf1dmcdm |
|- ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) e. _V /\ ( L " E ) e. _V /\ ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) ) -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) <_ ( # ` ( L " E ) ) ) |
| 98 |
15 19 96 97
|
syl3anc |
|- ( ph -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) <_ ( # ` ( L " E ) ) ) |
| 99 |
13 98
|
eqbrtrrd |
|- ( ph -> ( ( odZ ` R ) ` N ) <_ ( # ` ( L " E ) ) ) |