Step |
Hyp |
Ref |
Expression |
1 |
|
hashscontpow.1 |
|- ( ph -> E C_ ZZ ) |
2 |
|
hashscontpow.2 |
|- ( ph -> N e. NN ) |
3 |
|
hashscontpow.3 |
|- ( ph -> A. k e. NN0 ( N ^ k ) e. E ) |
4 |
|
hashscontpow.4 |
|- ( ph -> R e. NN ) |
5 |
|
hashscontpow.5 |
|- ( ph -> ( N gcd R ) = 1 ) |
6 |
|
hashscontpow.6 |
|- L = ( ZRHom ` Y ) |
7 |
|
hashscontpow.7 |
|- Y = ( Z/nZ ` R ) |
8 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
9 |
|
odzcl |
|- ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) e. NN ) |
10 |
4 8 5 9
|
syl3anc |
|- ( ph -> ( ( odZ ` R ) ` N ) e. NN ) |
11 |
10
|
nnnn0d |
|- ( ph -> ( ( odZ ` R ) ` N ) e. NN0 ) |
12 |
|
hashfz1 |
|- ( ( ( odZ ` R ) ` N ) e. NN0 -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) = ( ( odZ ` R ) ` N ) ) |
13 |
11 12
|
syl |
|- ( ph -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) = ( ( odZ ` R ) ` N ) ) |
14 |
|
ovexd |
|- ( ph -> ( 1 ... ( ( odZ ` R ) ` N ) ) e. _V ) |
15 |
14
|
mptexd |
|- ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) e. _V ) |
16 |
6
|
fvexi |
|- L e. _V |
17 |
16
|
a1i |
|- ( ph -> L e. _V ) |
18 |
|
imaexg |
|- ( L e. _V -> ( L " E ) e. _V ) |
19 |
17 18
|
syl |
|- ( ph -> ( L " E ) e. _V ) |
20 |
4
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
21 |
7
|
zncrng |
|- ( R e. NN0 -> Y e. CRing ) |
22 |
20 21
|
syl |
|- ( ph -> Y e. CRing ) |
23 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
24 |
6
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
25 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
26 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
27 |
25 26
|
rhmf |
|- ( L e. ( ZZring RingHom Y ) -> L : ZZ --> ( Base ` Y ) ) |
28 |
22 23 24 27
|
4syl |
|- ( ph -> L : ZZ --> ( Base ` Y ) ) |
29 |
28
|
ffnd |
|- ( ph -> L Fn ZZ ) |
30 |
29
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> L Fn ZZ ) |
31 |
8
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> N e. ZZ ) |
32 |
|
elfznn |
|- ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> x e. NN ) |
33 |
32
|
adantl |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> x e. NN ) |
34 |
33
|
nnnn0d |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> x e. NN0 ) |
35 |
31 34
|
zexpcld |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( N ^ x ) e. ZZ ) |
36 |
|
oveq2 |
|- ( k = x -> ( N ^ k ) = ( N ^ x ) ) |
37 |
36
|
eleq1d |
|- ( k = x -> ( ( N ^ k ) e. E <-> ( N ^ x ) e. E ) ) |
38 |
3
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> A. k e. NN0 ( N ^ k ) e. E ) |
39 |
37 38 34
|
rspcdva |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( N ^ x ) e. E ) |
40 |
30 35 39
|
fnfvimad |
|- ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( L ` ( N ^ x ) ) e. ( L " E ) ) |
41 |
40
|
fmpttd |
|- ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) ) |
42 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> N e. NN ) |
43 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
44 |
|
simplr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
45 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> R e. NN ) |
46 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> ( N gcd R ) = 1 ) |
47 |
|
simpr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> a < b ) |
48 |
42 43 44 45 46 6 7 47
|
hashscontpow1 |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
49 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> N e. NN ) |
50 |
|
simplr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
51 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
52 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> R e. NN ) |
53 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( N gcd R ) = 1 ) |
54 |
|
simpr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> b < a ) |
55 |
49 50 51 52 53 6 7 54
|
hashscontpow1 |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( L ` ( N ^ b ) ) =/= ( L ` ( N ^ a ) ) ) |
56 |
55
|
necomd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
57 |
48 56
|
jaodan |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ ( a < b \/ b < a ) ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
58 |
57
|
ex |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( a < b \/ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) |
59 |
|
biidd |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( a = b <-> a = b ) ) |
60 |
59
|
necon3bbid |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b <-> a =/= b ) ) |
61 |
|
elfzelz |
|- ( a e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> a e. ZZ ) |
62 |
61
|
adantl |
|- ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. ZZ ) |
63 |
62
|
adantr |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. ZZ ) |
64 |
63
|
zred |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. RR ) |
65 |
|
elfzelz |
|- ( b e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> b e. ZZ ) |
66 |
65
|
zred |
|- ( b e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> b e. RR ) |
67 |
66
|
adantl |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> b e. RR ) |
68 |
|
lttri2 |
|- ( ( a e. RR /\ b e. RR ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) |
69 |
64 67 68
|
syl2anc |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) |
70 |
60 69
|
bitrd |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b <-> ( a < b \/ b < a ) ) ) |
71 |
70
|
imbi1d |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( -. a = b -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) <-> ( ( a < b \/ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) ) |
72 |
58 71
|
mpbird |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) |
73 |
72
|
imp |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) |
74 |
|
eqidd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) = ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ) |
75 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> x = a ) |
76 |
75
|
oveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> ( N ^ x ) = ( N ^ a ) ) |
77 |
76
|
fveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> ( L ` ( N ^ x ) ) = ( L ` ( N ^ a ) ) ) |
78 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
79 |
|
fvexd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ a ) ) e. _V ) |
80 |
74 77 78 79
|
fvmptd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( L ` ( N ^ a ) ) ) |
81 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> x = b ) |
82 |
81
|
oveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> ( N ^ x ) = ( N ^ b ) ) |
83 |
82
|
fveq2d |
|- ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> ( L ` ( N ^ x ) ) = ( L ` ( N ^ b ) ) ) |
84 |
|
simplr |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) |
85 |
|
fvexd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ b ) ) e. _V ) |
86 |
74 83 84 85
|
fvmptd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) = ( L ` ( N ^ b ) ) ) |
87 |
80 86
|
neeq12d |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) =/= ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) <-> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) |
88 |
73 87
|
mpbird |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) =/= ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) |
89 |
88
|
neneqd |
|- ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> -. ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) |
90 |
89
|
ex |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b -> -. ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) ) |
91 |
90
|
con4d |
|- ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) |
92 |
91
|
ralrimiva |
|- ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) |
93 |
92
|
ralrimiva |
|- ( ph -> A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) |
94 |
41 93
|
jca |
|- ( ph -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) /\ A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) ) |
95 |
|
dff13 |
|- ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) <-> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) /\ A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) ) |
96 |
94 95
|
sylibr |
|- ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) ) |
97 |
|
hashf1dmcdm |
|- ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) e. _V /\ ( L " E ) e. _V /\ ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) ) -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) <_ ( # ` ( L " E ) ) ) |
98 |
15 19 96 97
|
syl3anc |
|- ( ph -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) <_ ( # ` ( L " E ) ) ) |
99 |
13 98
|
eqbrtrrd |
|- ( ph -> ( ( odZ ` R ) ` N ) <_ ( # ` ( L " E ) ) ) |