| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashscontpow.1 |  |-  ( ph -> E C_ ZZ ) | 
						
							| 2 |  | hashscontpow.2 |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | hashscontpow.3 |  |-  ( ph -> A. k e. NN0 ( N ^ k ) e. E ) | 
						
							| 4 |  | hashscontpow.4 |  |-  ( ph -> R e. NN ) | 
						
							| 5 |  | hashscontpow.5 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 6 |  | hashscontpow.6 |  |-  L = ( ZRHom ` Y ) | 
						
							| 7 |  | hashscontpow.7 |  |-  Y = ( Z/nZ ` R ) | 
						
							| 8 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 9 |  | odzcl |  |-  ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) e. NN ) | 
						
							| 10 | 4 8 5 9 | syl3anc |  |-  ( ph -> ( ( odZ ` R ) ` N ) e. NN ) | 
						
							| 11 | 10 | nnnn0d |  |-  ( ph -> ( ( odZ ` R ) ` N ) e. NN0 ) | 
						
							| 12 |  | hashfz1 |  |-  ( ( ( odZ ` R ) ` N ) e. NN0 -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) = ( ( odZ ` R ) ` N ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) = ( ( odZ ` R ) ` N ) ) | 
						
							| 14 |  | ovexd |  |-  ( ph -> ( 1 ... ( ( odZ ` R ) ` N ) ) e. _V ) | 
						
							| 15 | 14 | mptexd |  |-  ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) e. _V ) | 
						
							| 16 | 6 | fvexi |  |-  L e. _V | 
						
							| 17 | 16 | a1i |  |-  ( ph -> L e. _V ) | 
						
							| 18 |  | imaexg |  |-  ( L e. _V -> ( L " E ) e. _V ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> ( L " E ) e. _V ) | 
						
							| 20 | 4 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 21 | 7 | zncrng |  |-  ( R e. NN0 -> Y e. CRing ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> Y e. CRing ) | 
						
							| 23 |  | crngring |  |-  ( Y e. CRing -> Y e. Ring ) | 
						
							| 24 | 6 | zrhrhm |  |-  ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) | 
						
							| 25 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 26 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 27 | 25 26 | rhmf |  |-  ( L e. ( ZZring RingHom Y ) -> L : ZZ --> ( Base ` Y ) ) | 
						
							| 28 | 22 23 24 27 | 4syl |  |-  ( ph -> L : ZZ --> ( Base ` Y ) ) | 
						
							| 29 | 28 | ffnd |  |-  ( ph -> L Fn ZZ ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> L Fn ZZ ) | 
						
							| 31 | 8 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> N e. ZZ ) | 
						
							| 32 |  | elfznn |  |-  ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> x e. NN ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> x e. NN ) | 
						
							| 34 | 33 | nnnn0d |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> x e. NN0 ) | 
						
							| 35 | 31 34 | zexpcld |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( N ^ x ) e. ZZ ) | 
						
							| 36 |  | oveq2 |  |-  ( k = x -> ( N ^ k ) = ( N ^ x ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( k = x -> ( ( N ^ k ) e. E <-> ( N ^ x ) e. E ) ) | 
						
							| 38 | 3 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> A. k e. NN0 ( N ^ k ) e. E ) | 
						
							| 39 | 37 38 34 | rspcdva |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( N ^ x ) e. E ) | 
						
							| 40 | 30 35 39 | fnfvimad |  |-  ( ( ph /\ x e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( L ` ( N ^ x ) ) e. ( L " E ) ) | 
						
							| 41 | 40 | fmpttd |  |-  ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) ) | 
						
							| 42 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> N e. NN ) | 
						
							| 43 |  | simpllr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) | 
						
							| 44 |  | simplr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) | 
						
							| 45 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> R e. NN ) | 
						
							| 46 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> ( N gcd R ) = 1 ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> a < b ) | 
						
							| 48 | 42 43 44 45 46 6 7 47 | hashscontpow1 |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ a < b ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) | 
						
							| 49 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> N e. NN ) | 
						
							| 50 |  | simplr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) | 
						
							| 51 |  | simpllr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) | 
						
							| 52 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> R e. NN ) | 
						
							| 53 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( N gcd R ) = 1 ) | 
						
							| 54 |  | simpr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> b < a ) | 
						
							| 55 | 49 50 51 52 53 6 7 54 | hashscontpow1 |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( L ` ( N ^ b ) ) =/= ( L ` ( N ^ a ) ) ) | 
						
							| 56 | 55 | necomd |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) | 
						
							| 57 | 48 56 | jaodan |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ ( a < b \/ b < a ) ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) | 
						
							| 58 | 57 | ex |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( a < b \/ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) | 
						
							| 59 |  | biidd |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( a = b <-> a = b ) ) | 
						
							| 60 | 59 | necon3bbid |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b <-> a =/= b ) ) | 
						
							| 61 |  | elfzelz |  |-  ( a e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> a e. ZZ ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. ZZ ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. ZZ ) | 
						
							| 64 | 63 | zred |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> a e. RR ) | 
						
							| 65 |  | elfzelz |  |-  ( b e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> b e. ZZ ) | 
						
							| 66 | 65 | zred |  |-  ( b e. ( 1 ... ( ( odZ ` R ) ` N ) ) -> b e. RR ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> b e. RR ) | 
						
							| 68 |  | lttri2 |  |-  ( ( a e. RR /\ b e. RR ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) | 
						
							| 69 | 64 67 68 | syl2anc |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) | 
						
							| 70 | 60 69 | bitrd |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b <-> ( a < b \/ b < a ) ) ) | 
						
							| 71 | 70 | imbi1d |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( -. a = b -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) <-> ( ( a < b \/ b < a ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) ) | 
						
							| 72 | 58 71 | mpbird |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) | 
						
							| 73 | 72 | imp |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) | 
						
							| 74 |  | eqidd |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) = ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ) | 
						
							| 75 |  | simpr |  |-  ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> x = a ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> ( N ^ x ) = ( N ^ a ) ) | 
						
							| 77 | 76 | fveq2d |  |-  ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = a ) -> ( L ` ( N ^ x ) ) = ( L ` ( N ^ a ) ) ) | 
						
							| 78 |  | simpllr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) | 
						
							| 79 |  | fvexd |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ a ) ) e. _V ) | 
						
							| 80 | 74 77 78 79 | fvmptd |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( L ` ( N ^ a ) ) ) | 
						
							| 81 |  | simpr |  |-  ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> x = b ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> ( N ^ x ) = ( N ^ b ) ) | 
						
							| 83 | 82 | fveq2d |  |-  ( ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) /\ x = b ) -> ( L ` ( N ^ x ) ) = ( L ` ( N ^ b ) ) ) | 
						
							| 84 |  | simplr |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) | 
						
							| 85 |  | fvexd |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( L ` ( N ^ b ) ) e. _V ) | 
						
							| 86 | 74 83 84 85 | fvmptd |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) = ( L ` ( N ^ b ) ) ) | 
						
							| 87 | 80 86 | neeq12d |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) =/= ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) <-> ( L ` ( N ^ a ) ) =/= ( L ` ( N ^ b ) ) ) ) | 
						
							| 88 | 73 87 | mpbird |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) =/= ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) | 
						
							| 89 | 88 | neneqd |  |-  ( ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ -. a = b ) -> -. ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) | 
						
							| 90 | 89 | ex |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( -. a = b -> -. ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) ) ) | 
						
							| 91 | 90 | con4d |  |-  ( ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) /\ b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) | 
						
							| 92 | 91 | ralrimiva |  |-  ( ( ph /\ a e. ( 1 ... ( ( odZ ` R ) ` N ) ) ) -> A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) | 
						
							| 93 | 92 | ralrimiva |  |-  ( ph -> A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) | 
						
							| 94 | 41 93 | jca |  |-  ( ph -> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) /\ A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) ) | 
						
							| 95 |  | dff13 |  |-  ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) <-> ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) --> ( L " E ) /\ A. a e. ( 1 ... ( ( odZ ` R ) ` N ) ) A. b e. ( 1 ... ( ( odZ ` R ) ` N ) ) ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` a ) = ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) ` b ) -> a = b ) ) ) | 
						
							| 96 | 94 95 | sylibr |  |-  ( ph -> ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) ) | 
						
							| 97 |  | hashf1dmcdm |  |-  ( ( ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) e. _V /\ ( L " E ) e. _V /\ ( x e. ( 1 ... ( ( odZ ` R ) ` N ) ) |-> ( L ` ( N ^ x ) ) ) : ( 1 ... ( ( odZ ` R ) ` N ) ) -1-1-> ( L " E ) ) -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) <_ ( # ` ( L " E ) ) ) | 
						
							| 98 | 15 19 96 97 | syl3anc |  |-  ( ph -> ( # ` ( 1 ... ( ( odZ ` R ) ` N ) ) ) <_ ( # ` ( L " E ) ) ) | 
						
							| 99 | 13 98 | eqbrtrrd |  |-  ( ph -> ( ( odZ ` R ) ` N ) <_ ( # ` ( L " E ) ) ) |