Step |
Hyp |
Ref |
Expression |
1 |
|
hashscontpow.1 |
|
2 |
|
hashscontpow.2 |
|
3 |
|
hashscontpow.3 |
|
4 |
|
hashscontpow.4 |
|
5 |
|
hashscontpow.5 |
|
6 |
|
hashscontpow.6 |
|
7 |
|
hashscontpow.7 |
|
8 |
2
|
nnzd |
|
9 |
|
odzcl |
|
10 |
4 8 5 9
|
syl3anc |
|
11 |
10
|
nnnn0d |
|
12 |
|
hashfz1 |
|
13 |
11 12
|
syl |
|
14 |
|
ovexd |
|
15 |
14
|
mptexd |
|
16 |
6
|
fvexi |
|
17 |
16
|
a1i |
|
18 |
|
imaexg |
|
19 |
17 18
|
syl |
|
20 |
4
|
nnnn0d |
|
21 |
7
|
zncrng |
|
22 |
20 21
|
syl |
|
23 |
|
crngring |
|
24 |
6
|
zrhrhm |
|
25 |
|
zringbas |
|
26 |
|
eqid |
|
27 |
25 26
|
rhmf |
|
28 |
22 23 24 27
|
4syl |
|
29 |
28
|
ffnd |
|
30 |
29
|
adantr |
|
31 |
8
|
adantr |
|
32 |
|
elfznn |
|
33 |
32
|
adantl |
|
34 |
33
|
nnnn0d |
|
35 |
31 34
|
zexpcld |
|
36 |
|
oveq2 |
|
37 |
36
|
eleq1d |
|
38 |
3
|
adantr |
|
39 |
37 38 34
|
rspcdva |
|
40 |
30 35 39
|
fnfvimad |
|
41 |
40
|
fmpttd |
|
42 |
2
|
ad3antrrr |
|
43 |
|
simpllr |
|
44 |
|
simplr |
|
45 |
4
|
ad3antrrr |
|
46 |
5
|
ad3antrrr |
|
47 |
|
simpr |
|
48 |
42 43 44 45 46 6 7 47
|
hashscontpow1 |
|
49 |
2
|
ad3antrrr |
|
50 |
|
simplr |
|
51 |
|
simpllr |
|
52 |
4
|
ad3antrrr |
|
53 |
5
|
ad3antrrr |
|
54 |
|
simpr |
|
55 |
49 50 51 52 53 6 7 54
|
hashscontpow1 |
|
56 |
55
|
necomd |
|
57 |
48 56
|
jaodan |
|
58 |
57
|
ex |
|
59 |
|
biidd |
|
60 |
59
|
necon3bbid |
|
61 |
|
elfzelz |
|
62 |
61
|
adantl |
|
63 |
62
|
adantr |
|
64 |
63
|
zred |
|
65 |
|
elfzelz |
|
66 |
65
|
zred |
|
67 |
66
|
adantl |
|
68 |
|
lttri2 |
|
69 |
64 67 68
|
syl2anc |
|
70 |
60 69
|
bitrd |
|
71 |
70
|
imbi1d |
|
72 |
58 71
|
mpbird |
|
73 |
72
|
imp |
|
74 |
|
eqidd |
|
75 |
|
simpr |
|
76 |
75
|
oveq2d |
|
77 |
76
|
fveq2d |
|
78 |
|
simpllr |
|
79 |
|
fvexd |
|
80 |
74 77 78 79
|
fvmptd |
|
81 |
|
simpr |
|
82 |
81
|
oveq2d |
|
83 |
82
|
fveq2d |
|
84 |
|
simplr |
|
85 |
|
fvexd |
|
86 |
74 83 84 85
|
fvmptd |
|
87 |
80 86
|
neeq12d |
|
88 |
73 87
|
mpbird |
|
89 |
88
|
neneqd |
|
90 |
89
|
ex |
|
91 |
90
|
con4d |
|
92 |
91
|
ralrimiva |
|
93 |
92
|
ralrimiva |
|
94 |
41 93
|
jca |
|
95 |
|
dff13 |
|
96 |
94 95
|
sylibr |
|
97 |
|
hashf1dmcdm |
|
98 |
15 19 96 97
|
syl3anc |
|
99 |
13 98
|
eqbrtrrd |
|