Metamath Proof Explorer


Theorem hashscontpow1

Description: Helper lemma for to prove inequality in Zr. (Contributed by metakunt, 28-Apr-2025)

Ref Expression
Hypotheses hashscontpow1.1 φ N
hashscontpow1.2 φ A 1 od R N
hashscontpow1.3 φ B 1 od R N
hashscontpow1.4 φ R
hashscontpow1.5 φ N gcd R = 1
hashscontpow1.6 L = ℤRHom Y
hashscontpow1.7 Y = /R
hashscontpow1.8 φ A < B
Assertion hashscontpow1 φ L N A L N B

Proof

Step Hyp Ref Expression
1 hashscontpow1.1 φ N
2 hashscontpow1.2 φ A 1 od R N
3 hashscontpow1.3 φ B 1 od R N
4 hashscontpow1.4 φ R
5 hashscontpow1.5 φ N gcd R = 1
6 hashscontpow1.6 L = ℤRHom Y
7 hashscontpow1.7 Y = /R
8 hashscontpow1.8 φ A < B
9 3 elfzelzd φ B
10 9 zred φ B
11 2 elfzelzd φ A
12 11 zred φ A
13 10 12 resubcld φ B A
14 1 nnzd φ N
15 odzcl R N N gcd R = 1 od R N
16 4 14 5 15 syl3anc φ od R N
17 16 nnred φ od R N
18 elfznn A 1 od R N A
19 2 18 syl φ A
20 19 nnrpd φ A +
21 10 20 ltsubrpd φ B A < B
22 elfzle2 B 1 od R N B od R N
23 3 22 syl φ B od R N
24 13 10 17 21 23 ltletrd φ B A < od R N
25 24 adantr φ L N A = L N B B A < od R N
26 odzval R N N gcd R = 1 od R N = inf i | R N i 1 <
27 4 14 5 26 syl3anc φ od R N = inf i | R N i 1 <
28 27 adantr φ L N A = L N B od R N = inf i | R N i 1 <
29 elrabi j i | R N i 1 j
30 29 adantl φ j i | R N i 1 j
31 30 nnred φ j i | R N i 1 j
32 31 ex φ j i | R N i 1 j
33 32 ssrdv φ i | R N i 1
34 33 adantr φ L N A = L N B i | R N i 1
35 1red φ 1
36 simpr φ x = 1 x = 1
37 36 breq1d φ x = 1 x y 1 y
38 37 ralbidv φ x = 1 y i | R N i 1 x y y i | R N i 1 1 y
39 elrabi y i | R N i 1 y
40 39 adantl φ y i | R N i 1 y
41 40 nnge1d φ y i | R N i 1 1 y
42 41 ralrimiva φ y i | R N i 1 1 y
43 35 38 42 rspcedvd φ x y i | R N i 1 x y
44 43 adantr φ L N A = L N B x y i | R N i 1 x y
45 oveq2 i = B A N i = N B A
46 45 oveq1d i = B A N i 1 = N B A 1
47 46 breq2d i = B A R N i 1 R N B A 1
48 9 adantr φ L N A = L N B B
49 11 adantr φ L N A = L N B A
50 48 49 zsubcld φ L N A = L N B B A
51 12 10 posdifd φ A < B 0 < B A
52 8 51 mpbid φ 0 < B A
53 52 adantr φ L N A = L N B 0 < B A
54 50 53 jca φ L N A = L N B B A 0 < B A
55 elnnz B A B A 0 < B A
56 54 55 sylibr φ L N A = L N B B A
57 4 nnzd φ R
58 57 adantr φ L N A = L N B R
59 14 adantr φ L N A = L N B N
60 19 nnnn0d φ A 0
61 60 adantr φ L N A = L N B A 0
62 59 61 zexpcld φ L N A = L N B N A
63 56 nnnn0d φ L N A = L N B B A 0
64 59 63 zexpcld φ L N A = L N B N B A
65 1zzd φ L N A = L N B 1
66 64 65 zsubcld φ L N A = L N B N B A 1
67 58 62 66 3jca φ L N A = L N B R N A N B A 1
68 simpr φ L N A = L N B L N A = L N B
69 68 eqcomd φ L N A = L N B L N B = L N A
70 4 nnnn0d φ R 0
71 70 adantr φ L N A = L N B R 0
72 elfznn B 1 od R N B
73 3 72 syl φ B
74 73 nnnn0d φ B 0
75 14 74 zexpcld φ N B
76 75 adantr φ L N A = L N B N B
77 7 6 zndvds R 0 N B N A L N B = L N A R N B N A
78 71 76 62 77 syl3anc φ L N A = L N B L N B = L N A R N B N A
79 69 78 mpbid φ L N A = L N B R N B N A
80 14 60 zexpcld φ N A
81 80 zcnd φ N A
82 9 11 zsubcld φ B A
83 0red φ 0
84 83 13 52 ltled φ 0 B A
85 82 84 jca φ B A 0 B A
86 elnn0z B A 0 B A 0 B A
87 85 86 sylibr φ B A 0
88 14 87 zexpcld φ N B A
89 88 zcnd φ N B A
90 1cnd φ 1
91 81 89 90 subdid φ N A N B A 1 = N A N B A N A 1
92 12 recnd φ A
93 10 recnd φ B
94 92 93 pncan3d φ A + B - A = B
95 94 eqcomd φ B = A + B - A
96 95 oveq2d φ N B = N A + B - A
97 1 nncnd φ N
98 97 87 60 expaddd φ N A + B - A = N A N B A
99 96 98 eqtrd φ N B = N A N B A
100 99 eqcomd φ N A N B A = N B
101 81 mulridd φ N A 1 = N A
102 100 101 oveq12d φ N A N B A N A 1 = N B N A
103 91 102 eqtr2d φ N B N A = N A N B A 1
104 103 adantr φ L N A = L N B N B N A = N A N B A 1
105 79 104 breqtrd φ L N A = L N B R N A N B A 1
106 57 80 gcdcomd φ R gcd N A = N A gcd R
107 rpexp N R A N A gcd R = 1 N gcd R = 1
108 14 57 19 107 syl3anc φ N A gcd R = 1 N gcd R = 1
109 5 108 mpbird φ N A gcd R = 1
110 106 109 eqtrd φ R gcd N A = 1
111 110 adantr φ L N A = L N B R gcd N A = 1
112 105 111 jca φ L N A = L N B R N A N B A 1 R gcd N A = 1
113 coprmdvds R N A N B A 1 R N A N B A 1 R gcd N A = 1 R N B A 1
114 113 imp R N A N B A 1 R N A N B A 1 R gcd N A = 1 R N B A 1
115 67 112 114 syl2anc φ L N A = L N B R N B A 1
116 47 56 115 elrabd φ L N A = L N B B A i | R N i 1
117 infrelb i | R N i 1 x y i | R N i 1 x y B A i | R N i 1 inf i | R N i 1 < B A
118 34 44 116 117 syl3anc φ L N A = L N B inf i | R N i 1 < B A
119 28 118 eqbrtrd φ L N A = L N B od R N B A
120 16 adantr φ L N A = L N B od R N
121 120 nnred φ L N A = L N B od R N
122 13 adantr φ L N A = L N B B A
123 121 122 lenltd φ L N A = L N B od R N B A ¬ B A < od R N
124 119 123 mpbid φ L N A = L N B ¬ B A < od R N
125 25 124 pm2.65da φ ¬ L N A = L N B
126 125 neqned φ L N A L N B