Description: Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma ): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in ApostolNT p. 16. Generalization of euclemma . (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by AV, 10-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | coprmdvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |
|
2 | zcn | |
|
3 | mulcom | |
|
4 | 1 2 3 | syl2an | |
5 | 4 | breq2d | |
6 | dvdsmulgcd | |
|
7 | 6 | ancoms | |
8 | 5 7 | bitrd | |
9 | 8 | 3adant1 | |
10 | 9 | adantr | |
11 | gcdcom | |
|
12 | 11 | 3adant3 | |
13 | 12 | eqeq1d | |
14 | oveq2 | |
|
15 | 13 14 | syl6bi | |
16 | 15 | imp | |
17 | 2 | mulridd | |
18 | 17 | 3ad2ant3 | |
19 | 18 | adantr | |
20 | 16 19 | eqtrd | |
21 | 20 | breq2d | |
22 | 10 21 | bitrd | |
23 | 22 | biimpd | |
24 | 23 | ex | |
25 | 24 | impcomd | |