Metamath Proof Explorer


Theorem aks6d1c3

Description: Claim 3 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 28-Apr-2025)

Ref Expression
Hypotheses aks6d1c3.1 φ N
aks6d1c3.2 φ P
aks6d1c3.3 φ P N
aks6d1c3.4 φ R
aks6d1c3.5 φ N gcd R = 1
aks6d1c3.6 E = k 0 , l 0 P k N P l
aks6d1c3.7 L = ℤRHom Y
aks6d1c3.8 Y = /R
aks6d1c3.9 φ log 2 N 2 < od R N
Assertion aks6d1c3 φ log 2 N 2 < L E 0 × 0

Proof

Step Hyp Ref Expression
1 aks6d1c3.1 φ N
2 aks6d1c3.2 φ P
3 aks6d1c3.3 φ P N
4 aks6d1c3.4 φ R
5 aks6d1c3.5 φ N gcd R = 1
6 aks6d1c3.6 E = k 0 , l 0 P k N P l
7 aks6d1c3.7 L = ℤRHom Y
8 aks6d1c3.8 Y = /R
9 aks6d1c3.9 φ log 2 N 2 < od R N
10 2re 2
11 10 a1i φ 2
12 2pos 0 < 2
13 12 a1i φ 0 < 2
14 1 nnred φ N
15 1 nngt0d φ 0 < N
16 1red φ 1
17 1lt2 1 < 2
18 17 a1i φ 1 < 2
19 16 18 ltned φ 1 2
20 19 necomd φ 2 1
21 11 13 14 15 20 relogbcld φ log 2 N
22 21 resqcld φ log 2 N 2
23 1 nnzd φ N
24 odzcl R N N gcd R = 1 od R N
25 4 23 5 24 syl3anc φ od R N
26 25 nnred φ od R N
27 1 2 3 4 5 6 7 8 hashscontpowcl φ L E 0 × 0 0
28 27 nn0red φ L E 0 × 0
29 nfv x φ
30 prmnn P P
31 2 30 syl φ P
32 31 nnzd φ P
33 32 adantr φ k 0 P
34 33 adantr φ k 0 l 0 P
35 simplr φ k 0 l 0 k 0
36 34 35 zexpcld φ k 0 l 0 P k
37 31 nnne0d φ P 0
38 dvdsval2 P P 0 N P N N P
39 32 37 23 38 syl3anc φ P N N P
40 3 39 mpbid φ N P
41 40 adantr φ k 0 N P
42 41 adantr φ k 0 l 0 N P
43 simpr φ k 0 l 0 l 0
44 42 43 zexpcld φ k 0 l 0 N P l
45 36 44 zmulcld φ k 0 l 0 P k N P l
46 45 ralrimiva φ k 0 l 0 P k N P l
47 46 ralrimiva φ k 0 l 0 P k N P l
48 6 fmpo k 0 l 0 P k N P l E : 0 × 0
49 47 48 sylib φ E : 0 × 0
50 49 ffund φ Fun E
51 49 ffvelcdmda φ x 0 × 0 E x
52 29 50 51 funimassd φ E 0 × 0
53 49 ffnd φ E Fn 0 × 0
54 53 adantr φ i 0 E Fn 0 × 0
55 simpr φ i 0 i 0
56 55 55 opelxpd φ i 0 i i 0 × 0
57 54 56 56 fnfvimad φ i 0 E i i E 0 × 0
58 vex k V
59 vex l V
60 58 59 op1std q = k l 1 st q = k
61 60 oveq2d q = k l P 1 st q = P k
62 58 59 op2ndd q = k l 2 nd q = l
63 62 oveq2d q = k l N P 2 nd q = N P l
64 61 63 oveq12d q = k l P 1 st q N P 2 nd q = P k N P l
65 64 mpompt q 0 × 0 P 1 st q N P 2 nd q = k 0 , l 0 P k N P l
66 6 65 eqtr4i E = q 0 × 0 P 1 st q N P 2 nd q
67 66 a1i φ i 0 E = q 0 × 0 P 1 st q N P 2 nd q
68 simpr φ i 0 q = i i q = i i
69 68 fveq2d φ i 0 q = i i 1 st q = 1 st i i
70 69 oveq2d φ i 0 q = i i P 1 st q = P 1 st i i
71 68 fveq2d φ i 0 q = i i 2 nd q = 2 nd i i
72 71 oveq2d φ i 0 q = i i N P 2 nd q = N P 2 nd i i
73 70 72 oveq12d φ i 0 q = i i P 1 st q N P 2 nd q = P 1 st i i N P 2 nd i i
74 opelxp i i 0 × 0 i 0 i 0
75 56 74 sylib φ i 0 i 0 i 0
76 75 74 sylibr φ i 0 i i 0 × 0
77 32 adantr φ i 0 P
78 xp1st i i 0 × 0 1 st i i 0
79 56 78 syl φ i 0 1 st i i 0
80 77 79 zexpcld φ i 0 P 1 st i i
81 40 adantr φ i 0 N P
82 xp2nd i i 0 × 0 2 nd i i 0
83 56 82 syl φ i 0 2 nd i i 0
84 81 83 zexpcld φ i 0 N P 2 nd i i
85 80 84 zmulcld φ i 0 P 1 st i i N P 2 nd i i
86 67 73 76 85 fvmptd φ i 0 E i i = P 1 st i i N P 2 nd i i
87 vex i V
88 87 87 op1st 1 st i i = i
89 88 a1i φ i 0 1 st i i = i
90 89 oveq2d φ i 0 P 1 st i i = P i
91 87 87 op2nd 2 nd i i = i
92 91 a1i φ i 0 2 nd i i = i
93 92 oveq2d φ i 0 N P 2 nd i i = N P i
94 90 93 oveq12d φ i 0 P 1 st i i N P 2 nd i i = P i N P i
95 14 recnd φ N
96 95 adantr φ i 0 N
97 77 zcnd φ i 0 P
98 37 adantr φ i 0 P 0
99 96 97 98 divcan2d φ i 0 P N P = N
100 99 eqcomd φ i 0 N = P N P
101 100 oveq1d φ i 0 N i = P N P i
102 81 zcnd φ i 0 N P
103 97 102 55 mulexpd φ i 0 P N P i = P i N P i
104 101 103 eqtr2d φ i 0 P i N P i = N i
105 94 104 eqtrd φ i 0 P 1 st i i N P 2 nd i i = N i
106 86 105 eqtrd φ i 0 E i i = N i
107 106 eleq1d φ i 0 E i i E 0 × 0 N i E 0 × 0
108 57 107 mpbid φ i 0 N i E 0 × 0
109 108 ralrimiva φ i 0 N i E 0 × 0
110 52 1 109 4 5 7 8 hashscontpow φ od R N L E 0 × 0
111 22 26 28 9 110 ltletrd φ log 2 N 2 < L E 0 × 0