| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c3.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | aks6d1c3.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | aks6d1c3.3 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 4 |  | aks6d1c3.4 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 5 |  | aks6d1c3.5 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 6 |  | aks6d1c3.6 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 7 |  | aks6d1c3.7 | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 8 |  | aks6d1c3.8 | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑅 ) | 
						
							| 9 |  | aks6d1c3.9 | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 10 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 12 |  | 2pos | ⊢ 0  <  2 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 14 | 1 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 15 | 1 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 16 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 17 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  1  <  2 ) | 
						
							| 19 | 16 18 | ltned | ⊢ ( 𝜑  →  1  ≠  2 ) | 
						
							| 20 | 19 | necomd | ⊢ ( 𝜑  →  2  ≠  1 ) | 
						
							| 21 | 11 13 14 15 20 | relogbcld | ⊢ ( 𝜑  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 22 | 21 | resqcld | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 23 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 24 |  | odzcl | ⊢ ( ( 𝑅  ∈  ℕ  ∧  𝑁  ∈  ℤ  ∧  ( 𝑁  gcd  𝑅 )  =  1 )  →  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 25 | 4 23 5 24 | syl3anc | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 26 | 25 | nnred | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 | hashscontpowcl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 28 | 27 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 30 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 31 | 2 30 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 32 | 31 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑃  ∈  ℤ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  𝑃  ∈  ℤ ) | 
						
							| 35 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 36 | 34 35 | zexpcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 37 | 31 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 38 |  | dvdsval2 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑃  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 39 | 32 37 23 38 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 40 | 3 39 | mpbid | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  𝑙  ∈  ℕ0 ) | 
						
							| 44 | 42 43 | zexpcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  ∈  ℤ ) | 
						
							| 45 | 36 44 | zmulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  ℤ ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ∀ 𝑙  ∈  ℕ0 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  ℤ ) | 
						
							| 47 | 46 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ∀ 𝑙  ∈  ℕ0 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  ℤ ) | 
						
							| 48 | 6 | fmpo | ⊢ ( ∀ 𝑘  ∈  ℕ0 ∀ 𝑙  ∈  ℕ0 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  ℤ  ↔  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ ) | 
						
							| 49 | 47 48 | sylib | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ ) | 
						
							| 50 | 49 | ffund | ⊢ ( 𝜑  →  Fun  𝐸 ) | 
						
							| 51 | 49 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 52 | 29 50 51 | funimassd | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ ) | 
						
							| 53 | 49 | ffnd | ⊢ ( 𝜑  →  𝐸  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝐸  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 56 | 55 55 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  〈 𝑖 ,  𝑖 〉  ∈  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 57 | 54 56 56 | fnfvimad | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐸 ‘ 〈 𝑖 ,  𝑖 〉 )  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 58 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 59 |  | vex | ⊢ 𝑙  ∈  V | 
						
							| 60 | 58 59 | op1std | ⊢ ( 𝑞  =  〈 𝑘 ,  𝑙 〉  →  ( 1st  ‘ 𝑞 )  =  𝑘 ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( 𝑞  =  〈 𝑘 ,  𝑙 〉  →  ( 𝑃 ↑ ( 1st  ‘ 𝑞 ) )  =  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 62 | 58 59 | op2ndd | ⊢ ( 𝑞  =  〈 𝑘 ,  𝑙 〉  →  ( 2nd  ‘ 𝑞 )  =  𝑙 ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑞  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑞 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) | 
						
							| 64 | 61 63 | oveq12d | ⊢ ( 𝑞  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑞 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑞 ) ) )  =  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 65 | 64 | mpompt | ⊢ ( 𝑞  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑞 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑞 ) ) ) )  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 66 | 6 65 | eqtr4i | ⊢ 𝐸  =  ( 𝑞  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑞 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑞 ) ) ) ) | 
						
							| 67 | 66 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝐸  =  ( 𝑞  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑞 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑞 ) ) ) ) ) | 
						
							| 68 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑞  =  〈 𝑖 ,  𝑖 〉 )  →  𝑞  =  〈 𝑖 ,  𝑖 〉 ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑞  =  〈 𝑖 ,  𝑖 〉 )  →  ( 1st  ‘ 𝑞 )  =  ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑞  =  〈 𝑖 ,  𝑖 〉 )  →  ( 𝑃 ↑ ( 1st  ‘ 𝑞 ) )  =  ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) ) ) | 
						
							| 71 | 68 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑞  =  〈 𝑖 ,  𝑖 〉 )  →  ( 2nd  ‘ 𝑞 )  =  ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑞  =  〈 𝑖 ,  𝑖 〉 )  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑞 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) ) ) | 
						
							| 73 | 70 72 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑞  =  〈 𝑖 ,  𝑖 〉 )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑞 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑞 ) ) )  =  ( ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) ) ) ) | 
						
							| 74 |  | opelxp | ⊢ ( 〈 𝑖 ,  𝑖 〉  ∈  ( ℕ0  ×  ℕ0 )  ↔  ( 𝑖  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 ) ) | 
						
							| 75 | 56 74 | sylib | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖  ∈  ℕ0  ∧  𝑖  ∈  ℕ0 ) ) | 
						
							| 76 | 75 74 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  〈 𝑖 ,  𝑖 〉  ∈  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 77 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑃  ∈  ℤ ) | 
						
							| 78 |  | xp1st | ⊢ ( 〈 𝑖 ,  𝑖 〉  ∈  ( ℕ0  ×  ℕ0 )  →  ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 )  ∈  ℕ0 ) | 
						
							| 79 | 56 78 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 )  ∈  ℕ0 ) | 
						
							| 80 | 77 79 | zexpcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) )  ∈  ℤ ) | 
						
							| 81 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 82 |  | xp2nd | ⊢ ( 〈 𝑖 ,  𝑖 〉  ∈  ( ℕ0  ×  ℕ0 )  →  ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 )  ∈  ℕ0 ) | 
						
							| 83 | 56 82 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 )  ∈  ℕ0 ) | 
						
							| 84 | 81 83 | zexpcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) )  ∈  ℤ ) | 
						
							| 85 | 80 84 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) ) )  ∈  ℤ ) | 
						
							| 86 | 67 73 76 85 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐸 ‘ 〈 𝑖 ,  𝑖 〉 )  =  ( ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) ) ) ) | 
						
							| 87 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 88 | 87 87 | op1st | ⊢ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 )  =  𝑖 | 
						
							| 89 | 88 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 )  =  𝑖 ) | 
						
							| 90 | 89 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) )  =  ( 𝑃 ↑ 𝑖 ) ) | 
						
							| 91 | 87 87 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 )  =  𝑖 | 
						
							| 92 | 91 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 )  =  𝑖 ) | 
						
							| 93 | 92 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑖 ) ) | 
						
							| 94 | 90 93 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) ) )  =  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑖 ) ) ) | 
						
							| 95 | 14 | recnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 97 | 77 | zcnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑃  ∈  ℂ ) | 
						
							| 98 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑃  ≠  0 ) | 
						
							| 99 | 96 97 98 | divcan2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑃  ·  ( 𝑁  /  𝑃 ) )  =  𝑁 ) | 
						
							| 100 | 99 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑁  =  ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁 ↑ 𝑖 )  =  ( ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 102 | 81 | zcnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℂ ) | 
						
							| 103 | 97 102 55 | mulexpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ↑ 𝑖 )  =  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑖 ) ) ) | 
						
							| 104 | 101 103 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑖 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑖 ) )  =  ( 𝑁 ↑ 𝑖 ) ) | 
						
							| 105 | 94 104 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑃 ↑ ( 1st  ‘ 〈 𝑖 ,  𝑖 〉 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 〈 𝑖 ,  𝑖 〉 ) ) )  =  ( 𝑁 ↑ 𝑖 ) ) | 
						
							| 106 | 86 105 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐸 ‘ 〈 𝑖 ,  𝑖 〉 )  =  ( 𝑁 ↑ 𝑖 ) ) | 
						
							| 107 | 106 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐸 ‘ 〈 𝑖 ,  𝑖 〉 )  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ↔  ( 𝑁 ↑ 𝑖 )  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 108 | 57 107 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁 ↑ 𝑖 )  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 109 | 108 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℕ0 ( 𝑁 ↑ 𝑖 )  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 110 | 52 1 109 4 5 7 8 | hashscontpow | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 )  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 111 | 22 26 28 9 110 | ltletrd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) |