Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c3.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
aks6d1c3.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
3 |
|
aks6d1c3.3 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
4 |
|
aks6d1c3.4 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
5 |
|
aks6d1c3.5 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
6 |
|
aks6d1c3.6 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
7 |
|
aks6d1c3.7 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
8 |
|
aks6d1c3.8 |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑅 ) |
9 |
|
aks6d1c3.9 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
10 |
|
2re |
⊢ 2 ∈ ℝ |
11 |
10
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
12 |
|
2pos |
⊢ 0 < 2 |
13 |
12
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
14 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
15 |
1
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
16 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
17 |
|
1lt2 |
⊢ 1 < 2 |
18 |
17
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
19 |
16 18
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
20 |
19
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
21 |
11 13 14 15 20
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
22 |
21
|
resqcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) ∈ ℝ ) |
23 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
24 |
|
odzcl |
⊢ ( ( 𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 gcd 𝑅 ) = 1 ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ ) |
25 |
4 23 5 24
|
syl3anc |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ ) |
26 |
25
|
nnred |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℝ ) |
27 |
1 2 3 4 5 6 7 8
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
28 |
27
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
29 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
30 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
32 |
31
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
36 |
34 35
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
37 |
31
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
38 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
39 |
32 37 23 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
40 |
3 39
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑙 ∈ ℕ0 ) |
44 |
42 43
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ∈ ℤ ) |
45 |
36 44
|
zmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ) |
46 |
45
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ) |
47 |
46
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ) |
48 |
6
|
fmpo |
⊢ ( ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ↔ 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
49 |
47 48
|
sylib |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
50 |
49
|
ffund |
⊢ ( 𝜑 → Fun 𝐸 ) |
51 |
49
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑥 ) ∈ ℤ ) |
52 |
29 50 51
|
funimassd |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
53 |
49
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
56 |
55 55
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) ) |
57 |
54 56 56
|
fnfvimad |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
58 |
|
vex |
⊢ 𝑘 ∈ V |
59 |
|
vex |
⊢ 𝑙 ∈ V |
60 |
58 59
|
op1std |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( 1st ‘ 𝑞 ) = 𝑘 ) |
61 |
60
|
oveq2d |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) = ( 𝑃 ↑ 𝑘 ) ) |
62 |
58 59
|
op2ndd |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( 2nd ‘ 𝑞 ) = 𝑙 ) |
63 |
62
|
oveq2d |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
64 |
61 63
|
oveq12d |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) = ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
65 |
64
|
mpompt |
⊢ ( 𝑞 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) ) = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
66 |
6 65
|
eqtr4i |
⊢ 𝐸 = ( 𝑞 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) ) |
67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐸 = ( 𝑞 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) ) ) |
68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → 𝑞 = 〈 𝑖 , 𝑖 〉 ) |
69 |
68
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( 1st ‘ 𝑞 ) = ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) |
70 |
69
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) = ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) ) |
71 |
68
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( 2nd ‘ 𝑞 ) = ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) |
72 |
71
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) |
73 |
70 72
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) = ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) ) |
74 |
|
opelxp |
⊢ ( 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) ↔ ( 𝑖 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) |
75 |
56 74
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) |
76 |
75 74
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) ) |
77 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
78 |
|
xp1st |
⊢ ( 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) → ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
79 |
56 78
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
80 |
77 79
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) ∈ ℤ ) |
81 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
82 |
|
xp2nd |
⊢ ( 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) → ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
83 |
56 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
84 |
81 83
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ∈ ℤ ) |
85 |
80 84
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) ∈ ℤ ) |
86 |
67 73 76 85
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) = ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) ) |
87 |
|
vex |
⊢ 𝑖 ∈ V |
88 |
87 87
|
op1st |
⊢ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 |
89 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 ) |
90 |
89
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) = ( 𝑃 ↑ 𝑖 ) ) |
91 |
87 87
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 |
92 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 ) |
93 |
92
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) |
94 |
90 93
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) = ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) ) |
95 |
14
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
97 |
77
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ∈ ℂ ) |
98 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
99 |
96 97 98
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑃 · ( 𝑁 / 𝑃 ) ) = 𝑁 ) |
100 |
99
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
101 |
100
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑖 ) = ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑖 ) ) |
102 |
81
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℂ ) |
103 |
97 102 55
|
mulexpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑖 ) = ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) ) |
104 |
101 103
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) = ( 𝑁 ↑ 𝑖 ) ) |
105 |
94 104
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) = ( 𝑁 ↑ 𝑖 ) ) |
106 |
86 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) = ( 𝑁 ↑ 𝑖 ) ) |
107 |
106
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ↔ ( 𝑁 ↑ 𝑖 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
108 |
57 107
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑖 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
109 |
108
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝑁 ↑ 𝑖 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
110 |
52 1 109 4 5 7 8
|
hashscontpow |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
111 |
22 26 28 9 110
|
ltletrd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |