| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c3.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
aks6d1c3.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 3 |
|
aks6d1c3.3 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 4 |
|
aks6d1c3.4 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 5 |
|
aks6d1c3.5 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 6 |
|
aks6d1c3.6 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 7 |
|
aks6d1c3.7 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
| 8 |
|
aks6d1c3.8 |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑅 ) |
| 9 |
|
aks6d1c3.9 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 10 |
|
2re |
⊢ 2 ∈ ℝ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 12 |
|
2pos |
⊢ 0 < 2 |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 14 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 15 |
1
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 16 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 17 |
|
1lt2 |
⊢ 1 < 2 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 19 |
16 18
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 20 |
19
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 21 |
11 13 14 15 20
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 22 |
21
|
resqcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) ∈ ℝ ) |
| 23 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 24 |
|
odzcl |
⊢ ( ( 𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 gcd 𝑅 ) = 1 ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ ) |
| 25 |
4 23 5 24
|
syl3anc |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ ) |
| 26 |
25
|
nnred |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℝ ) |
| 27 |
1 2 3 4 5 6 7 8
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 28 |
27
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
| 29 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 30 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 32 |
31
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
| 35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 36 |
34 35
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 37 |
31
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 38 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 39 |
32 37 23 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 40 |
3 39
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑙 ∈ ℕ0 ) |
| 44 |
42 43
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ∈ ℤ ) |
| 45 |
36 44
|
zmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ) |
| 46 |
45
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ) |
| 47 |
46
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ) |
| 48 |
6
|
fmpo |
⊢ ( ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ ℤ ↔ 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
| 49 |
47 48
|
sylib |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
| 50 |
49
|
ffund |
⊢ ( 𝜑 → Fun 𝐸 ) |
| 51 |
49
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑥 ) ∈ ℤ ) |
| 52 |
29 50 51
|
funimassd |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
| 53 |
49
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 56 |
55 55
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) ) |
| 57 |
54 56 56
|
fnfvimad |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 58 |
|
vex |
⊢ 𝑘 ∈ V |
| 59 |
|
vex |
⊢ 𝑙 ∈ V |
| 60 |
58 59
|
op1std |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( 1st ‘ 𝑞 ) = 𝑘 ) |
| 61 |
60
|
oveq2d |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) = ( 𝑃 ↑ 𝑘 ) ) |
| 62 |
58 59
|
op2ndd |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( 2nd ‘ 𝑞 ) = 𝑙 ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
| 64 |
61 63
|
oveq12d |
⊢ ( 𝑞 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) = ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 65 |
64
|
mpompt |
⊢ ( 𝑞 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) ) = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 66 |
6 65
|
eqtr4i |
⊢ 𝐸 = ( 𝑞 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) ) |
| 67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐸 = ( 𝑞 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) ) ) |
| 68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → 𝑞 = 〈 𝑖 , 𝑖 〉 ) |
| 69 |
68
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( 1st ‘ 𝑞 ) = ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) |
| 70 |
69
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) = ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) ) |
| 71 |
68
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( 2nd ‘ 𝑞 ) = ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) |
| 73 |
70 72
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑞 = 〈 𝑖 , 𝑖 〉 ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑞 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑞 ) ) ) = ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) ) |
| 74 |
|
opelxp |
⊢ ( 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) ↔ ( 𝑖 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) |
| 75 |
56 74
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) |
| 76 |
75 74
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) ) |
| 77 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
| 78 |
|
xp1st |
⊢ ( 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) → ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
| 79 |
56 78
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
| 80 |
77 79
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) ∈ ℤ ) |
| 81 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 82 |
|
xp2nd |
⊢ ( 〈 𝑖 , 𝑖 〉 ∈ ( ℕ0 × ℕ0 ) → ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
| 83 |
56 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ℕ0 ) |
| 84 |
81 83
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ∈ ℤ ) |
| 85 |
80 84
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) ∈ ℤ ) |
| 86 |
67 73 76 85
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) = ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) ) |
| 87 |
|
vex |
⊢ 𝑖 ∈ V |
| 88 |
87 87
|
op1st |
⊢ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 |
| 89 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 ) |
| 90 |
89
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) = ( 𝑃 ↑ 𝑖 ) ) |
| 91 |
87 87
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 |
| 92 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) = 𝑖 ) |
| 93 |
92
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) |
| 94 |
90 93
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) = ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) ) |
| 95 |
14
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 97 |
77
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ∈ ℂ ) |
| 98 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
| 99 |
96 97 98
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑃 · ( 𝑁 / 𝑃 ) ) = 𝑁 ) |
| 100 |
99
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
| 101 |
100
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑖 ) = ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑖 ) ) |
| 102 |
81
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℂ ) |
| 103 |
97 102 55
|
mulexpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑖 ) = ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) ) |
| 104 |
101 103
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑖 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑖 ) ) = ( 𝑁 ↑ 𝑖 ) ) |
| 105 |
94 104
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 1st ‘ 〈 𝑖 , 𝑖 〉 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 〈 𝑖 , 𝑖 〉 ) ) ) = ( 𝑁 ↑ 𝑖 ) ) |
| 106 |
86 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) = ( 𝑁 ↑ 𝑖 ) ) |
| 107 |
106
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐸 ‘ 〈 𝑖 , 𝑖 〉 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ↔ ( 𝑁 ↑ 𝑖 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 108 |
57 107
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑖 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 109 |
108
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝑁 ↑ 𝑖 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 110 |
52 1 109 4 5 7 8
|
hashscontpow |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 111 |
22 26 28 9 110
|
ltletrd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |