Metamath Proof Explorer
Description: Closure of the general logarithm with a positive real base on positive
reals, a deduction version. (Contributed by metakunt, 22-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
relogbcld.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
relogbcld.2 |
⊢ ( 𝜑 → 0 < 𝐵 ) |
|
|
relogbcld.3 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
|
|
relogbcld.4 |
⊢ ( 𝜑 → 0 < 𝑋 ) |
|
|
relogbcld.5 |
⊢ ( 𝜑 → 𝐵 ≠ 1 ) |
|
Assertion |
relogbcld |
⊢ ( 𝜑 → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
relogbcld.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
2 |
|
relogbcld.2 |
⊢ ( 𝜑 → 0 < 𝐵 ) |
3 |
|
relogbcld.3 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
4 |
|
relogbcld.4 |
⊢ ( 𝜑 → 0 < 𝑋 ) |
5 |
|
relogbcld.5 |
⊢ ( 𝜑 → 𝐵 ≠ 1 ) |
6 |
1 2
|
elrpd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
7 |
3 4
|
elrpd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
8 |
6 7 5
|
3jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ) |
9 |
|
relogbcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |