Metamath Proof Explorer


Theorem relogbcld

Description: Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbcld.1 ( 𝜑𝐵 ∈ ℝ )
relogbcld.2 ( 𝜑 → 0 < 𝐵 )
relogbcld.3 ( 𝜑𝑋 ∈ ℝ )
relogbcld.4 ( 𝜑 → 0 < 𝑋 )
relogbcld.5 ( 𝜑𝐵 ≠ 1 )
Assertion relogbcld ( 𝜑 → ( 𝐵 logb 𝑋 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 relogbcld.1 ( 𝜑𝐵 ∈ ℝ )
2 relogbcld.2 ( 𝜑 → 0 < 𝐵 )
3 relogbcld.3 ( 𝜑𝑋 ∈ ℝ )
4 relogbcld.4 ( 𝜑 → 0 < 𝑋 )
5 relogbcld.5 ( 𝜑𝐵 ≠ 1 )
6 1 2 elrpd ( 𝜑𝐵 ∈ ℝ+ )
7 3 4 elrpd ( 𝜑𝑋 ∈ ℝ+ )
8 6 7 5 3jca ( 𝜑 → ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) )
9 relogbcl ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ )
10 8 9 syl ( 𝜑 → ( 𝐵 logb 𝑋 ) ∈ ℝ )