Metamath Proof Explorer


Theorem relogbcld

Description: Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbcld.1 φ B
relogbcld.2 φ 0 < B
relogbcld.3 φ X
relogbcld.4 φ 0 < X
relogbcld.5 φ B 1
Assertion relogbcld φ log B X

Proof

Step Hyp Ref Expression
1 relogbcld.1 φ B
2 relogbcld.2 φ 0 < B
3 relogbcld.3 φ X
4 relogbcld.4 φ 0 < X
5 relogbcld.5 φ B 1
6 1 2 elrpd φ B +
7 3 4 elrpd φ X +
8 6 7 5 3jca φ B + X + B 1
9 relogbcl B + X + B 1 log B X
10 8 9 syl φ log B X