Metamath Proof Explorer


Theorem relogbcld

Description: Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbcld.1
|- ( ph -> B e. RR )
relogbcld.2
|- ( ph -> 0 < B )
relogbcld.3
|- ( ph -> X e. RR )
relogbcld.4
|- ( ph -> 0 < X )
relogbcld.5
|- ( ph -> B =/= 1 )
Assertion relogbcld
|- ( ph -> ( B logb X ) e. RR )

Proof

Step Hyp Ref Expression
1 relogbcld.1
 |-  ( ph -> B e. RR )
2 relogbcld.2
 |-  ( ph -> 0 < B )
3 relogbcld.3
 |-  ( ph -> X e. RR )
4 relogbcld.4
 |-  ( ph -> 0 < X )
5 relogbcld.5
 |-  ( ph -> B =/= 1 )
6 1 2 elrpd
 |-  ( ph -> B e. RR+ )
7 3 4 elrpd
 |-  ( ph -> X e. RR+ )
8 6 7 5 3jca
 |-  ( ph -> ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) )
9 relogbcl
 |-  ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B logb X ) e. RR )
10 8 9 syl
 |-  ( ph -> ( B logb X ) e. RR )