Description: Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relogbcld.1 | |- ( ph -> B e. RR ) |
|
relogbcld.2 | |- ( ph -> 0 < B ) |
||
relogbcld.3 | |- ( ph -> X e. RR ) |
||
relogbcld.4 | |- ( ph -> 0 < X ) |
||
relogbcld.5 | |- ( ph -> B =/= 1 ) |
||
Assertion | relogbcld | |- ( ph -> ( B logb X ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogbcld.1 | |- ( ph -> B e. RR ) |
|
2 | relogbcld.2 | |- ( ph -> 0 < B ) |
|
3 | relogbcld.3 | |- ( ph -> X e. RR ) |
|
4 | relogbcld.4 | |- ( ph -> 0 < X ) |
|
5 | relogbcld.5 | |- ( ph -> B =/= 1 ) |
|
6 | 1 2 | elrpd | |- ( ph -> B e. RR+ ) |
7 | 3 4 | elrpd | |- ( ph -> X e. RR+ ) |
8 | 6 7 5 | 3jca | |- ( ph -> ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) ) |
9 | relogbcl | |- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B logb X ) e. RR ) |
|
10 | 8 9 | syl | |- ( ph -> ( B logb X ) e. RR ) |