| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c3.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | aks6d1c3.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | aks6d1c3.3 |  |-  ( ph -> P || N ) | 
						
							| 4 |  | aks6d1c3.4 |  |-  ( ph -> R e. NN ) | 
						
							| 5 |  | aks6d1c3.5 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 6 |  | aks6d1c3.6 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 7 |  | aks6d1c3.7 |  |-  L = ( ZRHom ` Y ) | 
						
							| 8 |  | aks6d1c3.8 |  |-  Y = ( Z/nZ ` R ) | 
						
							| 9 |  | aks6d1c3.9 |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) | 
						
							| 10 |  | 2re |  |-  2 e. RR | 
						
							| 11 | 10 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 12 |  | 2pos |  |-  0 < 2 | 
						
							| 13 | 12 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 14 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 15 | 1 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 16 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 17 |  | 1lt2 |  |-  1 < 2 | 
						
							| 18 | 17 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 19 | 16 18 | ltned |  |-  ( ph -> 1 =/= 2 ) | 
						
							| 20 | 19 | necomd |  |-  ( ph -> 2 =/= 1 ) | 
						
							| 21 | 11 13 14 15 20 | relogbcld |  |-  ( ph -> ( 2 logb N ) e. RR ) | 
						
							| 22 | 21 | resqcld |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) e. RR ) | 
						
							| 23 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 24 |  | odzcl |  |-  ( ( R e. NN /\ N e. ZZ /\ ( N gcd R ) = 1 ) -> ( ( odZ ` R ) ` N ) e. NN ) | 
						
							| 25 | 4 23 5 24 | syl3anc |  |-  ( ph -> ( ( odZ ` R ) ` N ) e. NN ) | 
						
							| 26 | 25 | nnred |  |-  ( ph -> ( ( odZ ` R ) ` N ) e. RR ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 | hashscontpowcl |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) | 
						
							| 28 | 27 | nn0red |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) | 
						
							| 29 |  | nfv |  |-  F/ x ph | 
						
							| 30 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 31 | 2 30 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 32 | 31 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> P e. ZZ ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ l e. NN0 ) -> P e. ZZ ) | 
						
							| 35 |  | simplr |  |-  ( ( ( ph /\ k e. NN0 ) /\ l e. NN0 ) -> k e. NN0 ) | 
						
							| 36 | 34 35 | zexpcld |  |-  ( ( ( ph /\ k e. NN0 ) /\ l e. NN0 ) -> ( P ^ k ) e. ZZ ) | 
						
							| 37 | 31 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 38 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 39 | 32 37 23 38 | syl3anc |  |-  ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 40 | 3 39 | mpbid |  |-  ( ph -> ( N / P ) e. ZZ ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> ( N / P ) e. ZZ ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ l e. NN0 ) -> ( N / P ) e. ZZ ) | 
						
							| 43 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ l e. NN0 ) -> l e. NN0 ) | 
						
							| 44 | 42 43 | zexpcld |  |-  ( ( ( ph /\ k e. NN0 ) /\ l e. NN0 ) -> ( ( N / P ) ^ l ) e. ZZ ) | 
						
							| 45 | 36 44 | zmulcld |  |-  ( ( ( ph /\ k e. NN0 ) /\ l e. NN0 ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) e. ZZ ) | 
						
							| 46 | 45 | ralrimiva |  |-  ( ( ph /\ k e. NN0 ) -> A. l e. NN0 ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) e. ZZ ) | 
						
							| 47 | 46 | ralrimiva |  |-  ( ph -> A. k e. NN0 A. l e. NN0 ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) e. ZZ ) | 
						
							| 48 | 6 | fmpo |  |-  ( A. k e. NN0 A. l e. NN0 ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) e. ZZ <-> E : ( NN0 X. NN0 ) --> ZZ ) | 
						
							| 49 | 47 48 | sylib |  |-  ( ph -> E : ( NN0 X. NN0 ) --> ZZ ) | 
						
							| 50 | 49 | ffund |  |-  ( ph -> Fun E ) | 
						
							| 51 | 49 | ffvelcdmda |  |-  ( ( ph /\ x e. ( NN0 X. NN0 ) ) -> ( E ` x ) e. ZZ ) | 
						
							| 52 | 29 50 51 | funimassd |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) | 
						
							| 53 | 49 | ffnd |  |-  ( ph -> E Fn ( NN0 X. NN0 ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> E Fn ( NN0 X. NN0 ) ) | 
						
							| 55 |  | simpr |  |-  ( ( ph /\ i e. NN0 ) -> i e. NN0 ) | 
						
							| 56 | 55 55 | opelxpd |  |-  ( ( ph /\ i e. NN0 ) -> <. i , i >. e. ( NN0 X. NN0 ) ) | 
						
							| 57 | 54 56 56 | fnfvimad |  |-  ( ( ph /\ i e. NN0 ) -> ( E ` <. i , i >. ) e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 58 |  | vex |  |-  k e. _V | 
						
							| 59 |  | vex |  |-  l e. _V | 
						
							| 60 | 58 59 | op1std |  |-  ( q = <. k , l >. -> ( 1st ` q ) = k ) | 
						
							| 61 | 60 | oveq2d |  |-  ( q = <. k , l >. -> ( P ^ ( 1st ` q ) ) = ( P ^ k ) ) | 
						
							| 62 | 58 59 | op2ndd |  |-  ( q = <. k , l >. -> ( 2nd ` q ) = l ) | 
						
							| 63 | 62 | oveq2d |  |-  ( q = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` q ) ) = ( ( N / P ) ^ l ) ) | 
						
							| 64 | 61 63 | oveq12d |  |-  ( q = <. k , l >. -> ( ( P ^ ( 1st ` q ) ) x. ( ( N / P ) ^ ( 2nd ` q ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 65 | 64 | mpompt |  |-  ( q e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` q ) ) x. ( ( N / P ) ^ ( 2nd ` q ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 66 | 6 65 | eqtr4i |  |-  E = ( q e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` q ) ) x. ( ( N / P ) ^ ( 2nd ` q ) ) ) ) | 
						
							| 67 | 66 | a1i |  |-  ( ( ph /\ i e. NN0 ) -> E = ( q e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` q ) ) x. ( ( N / P ) ^ ( 2nd ` q ) ) ) ) ) | 
						
							| 68 |  | simpr |  |-  ( ( ( ph /\ i e. NN0 ) /\ q = <. i , i >. ) -> q = <. i , i >. ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( ( ph /\ i e. NN0 ) /\ q = <. i , i >. ) -> ( 1st ` q ) = ( 1st ` <. i , i >. ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ( ph /\ i e. NN0 ) /\ q = <. i , i >. ) -> ( P ^ ( 1st ` q ) ) = ( P ^ ( 1st ` <. i , i >. ) ) ) | 
						
							| 71 | 68 | fveq2d |  |-  ( ( ( ph /\ i e. NN0 ) /\ q = <. i , i >. ) -> ( 2nd ` q ) = ( 2nd ` <. i , i >. ) ) | 
						
							| 72 | 71 | oveq2d |  |-  ( ( ( ph /\ i e. NN0 ) /\ q = <. i , i >. ) -> ( ( N / P ) ^ ( 2nd ` q ) ) = ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) ) | 
						
							| 73 | 70 72 | oveq12d |  |-  ( ( ( ph /\ i e. NN0 ) /\ q = <. i , i >. ) -> ( ( P ^ ( 1st ` q ) ) x. ( ( N / P ) ^ ( 2nd ` q ) ) ) = ( ( P ^ ( 1st ` <. i , i >. ) ) x. ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) ) ) | 
						
							| 74 |  | opelxp |  |-  ( <. i , i >. e. ( NN0 X. NN0 ) <-> ( i e. NN0 /\ i e. NN0 ) ) | 
						
							| 75 | 56 74 | sylib |  |-  ( ( ph /\ i e. NN0 ) -> ( i e. NN0 /\ i e. NN0 ) ) | 
						
							| 76 | 75 74 | sylibr |  |-  ( ( ph /\ i e. NN0 ) -> <. i , i >. e. ( NN0 X. NN0 ) ) | 
						
							| 77 | 32 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> P e. ZZ ) | 
						
							| 78 |  | xp1st |  |-  ( <. i , i >. e. ( NN0 X. NN0 ) -> ( 1st ` <. i , i >. ) e. NN0 ) | 
						
							| 79 | 56 78 | syl |  |-  ( ( ph /\ i e. NN0 ) -> ( 1st ` <. i , i >. ) e. NN0 ) | 
						
							| 80 | 77 79 | zexpcld |  |-  ( ( ph /\ i e. NN0 ) -> ( P ^ ( 1st ` <. i , i >. ) ) e. ZZ ) | 
						
							| 81 | 40 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> ( N / P ) e. ZZ ) | 
						
							| 82 |  | xp2nd |  |-  ( <. i , i >. e. ( NN0 X. NN0 ) -> ( 2nd ` <. i , i >. ) e. NN0 ) | 
						
							| 83 | 56 82 | syl |  |-  ( ( ph /\ i e. NN0 ) -> ( 2nd ` <. i , i >. ) e. NN0 ) | 
						
							| 84 | 81 83 | zexpcld |  |-  ( ( ph /\ i e. NN0 ) -> ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) e. ZZ ) | 
						
							| 85 | 80 84 | zmulcld |  |-  ( ( ph /\ i e. NN0 ) -> ( ( P ^ ( 1st ` <. i , i >. ) ) x. ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) ) e. ZZ ) | 
						
							| 86 | 67 73 76 85 | fvmptd |  |-  ( ( ph /\ i e. NN0 ) -> ( E ` <. i , i >. ) = ( ( P ^ ( 1st ` <. i , i >. ) ) x. ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) ) ) | 
						
							| 87 |  | vex |  |-  i e. _V | 
						
							| 88 | 87 87 | op1st |  |-  ( 1st ` <. i , i >. ) = i | 
						
							| 89 | 88 | a1i |  |-  ( ( ph /\ i e. NN0 ) -> ( 1st ` <. i , i >. ) = i ) | 
						
							| 90 | 89 | oveq2d |  |-  ( ( ph /\ i e. NN0 ) -> ( P ^ ( 1st ` <. i , i >. ) ) = ( P ^ i ) ) | 
						
							| 91 | 87 87 | op2nd |  |-  ( 2nd ` <. i , i >. ) = i | 
						
							| 92 | 91 | a1i |  |-  ( ( ph /\ i e. NN0 ) -> ( 2nd ` <. i , i >. ) = i ) | 
						
							| 93 | 92 | oveq2d |  |-  ( ( ph /\ i e. NN0 ) -> ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) = ( ( N / P ) ^ i ) ) | 
						
							| 94 | 90 93 | oveq12d |  |-  ( ( ph /\ i e. NN0 ) -> ( ( P ^ ( 1st ` <. i , i >. ) ) x. ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) ) = ( ( P ^ i ) x. ( ( N / P ) ^ i ) ) ) | 
						
							| 95 | 14 | recnd |  |-  ( ph -> N e. CC ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> N e. CC ) | 
						
							| 97 | 77 | zcnd |  |-  ( ( ph /\ i e. NN0 ) -> P e. CC ) | 
						
							| 98 | 37 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> P =/= 0 ) | 
						
							| 99 | 96 97 98 | divcan2d |  |-  ( ( ph /\ i e. NN0 ) -> ( P x. ( N / P ) ) = N ) | 
						
							| 100 | 99 | eqcomd |  |-  ( ( ph /\ i e. NN0 ) -> N = ( P x. ( N / P ) ) ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( ph /\ i e. NN0 ) -> ( N ^ i ) = ( ( P x. ( N / P ) ) ^ i ) ) | 
						
							| 102 | 81 | zcnd |  |-  ( ( ph /\ i e. NN0 ) -> ( N / P ) e. CC ) | 
						
							| 103 | 97 102 55 | mulexpd |  |-  ( ( ph /\ i e. NN0 ) -> ( ( P x. ( N / P ) ) ^ i ) = ( ( P ^ i ) x. ( ( N / P ) ^ i ) ) ) | 
						
							| 104 | 101 103 | eqtr2d |  |-  ( ( ph /\ i e. NN0 ) -> ( ( P ^ i ) x. ( ( N / P ) ^ i ) ) = ( N ^ i ) ) | 
						
							| 105 | 94 104 | eqtrd |  |-  ( ( ph /\ i e. NN0 ) -> ( ( P ^ ( 1st ` <. i , i >. ) ) x. ( ( N / P ) ^ ( 2nd ` <. i , i >. ) ) ) = ( N ^ i ) ) | 
						
							| 106 | 86 105 | eqtrd |  |-  ( ( ph /\ i e. NN0 ) -> ( E ` <. i , i >. ) = ( N ^ i ) ) | 
						
							| 107 | 106 | eleq1d |  |-  ( ( ph /\ i e. NN0 ) -> ( ( E ` <. i , i >. ) e. ( E " ( NN0 X. NN0 ) ) <-> ( N ^ i ) e. ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 108 | 57 107 | mpbid |  |-  ( ( ph /\ i e. NN0 ) -> ( N ^ i ) e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 109 | 108 | ralrimiva |  |-  ( ph -> A. i e. NN0 ( N ^ i ) e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 110 | 52 1 109 4 5 7 8 | hashscontpow |  |-  ( ph -> ( ( odZ ` R ) ` N ) <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 111 | 22 26 28 9 110 | ltletrd |  |-  ( ph -> ( ( 2 logb N ) ^ 2 ) < ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |