Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c4.1 |
|- ( ph -> N e. NN ) |
2 |
|
aks6d1c4.2 |
|- ( ph -> P e. Prime ) |
3 |
|
aks6d1c4.3 |
|- ( ph -> P || N ) |
4 |
|
aks6d1c4.4 |
|- ( ph -> R e. NN ) |
5 |
|
aks6d1c4.5 |
|- ( ph -> ( N gcd R ) = 1 ) |
6 |
|
aks6d1c4.6 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
7 |
|
aks6d1c4.7 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
8 |
|
fvexd |
|- ( ph -> ( Unit ` ( Z/nZ ` R ) ) e. _V ) |
9 |
4
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
10 |
|
eqid |
|- ( Z/nZ ` R ) = ( Z/nZ ` R ) |
11 |
10
|
zncrng |
|- ( R e. NN0 -> ( Z/nZ ` R ) e. CRing ) |
12 |
9 11
|
syl |
|- ( ph -> ( Z/nZ ` R ) e. CRing ) |
13 |
|
crngring |
|- ( ( Z/nZ ` R ) e. CRing -> ( Z/nZ ` R ) e. Ring ) |
14 |
7
|
zrhrhm |
|- ( ( Z/nZ ` R ) e. Ring -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) |
15 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
16 |
|
eqid |
|- ( Base ` ( Z/nZ ` R ) ) = ( Base ` ( Z/nZ ` R ) ) |
17 |
15 16
|
rhmf |
|- ( L e. ( ZZring RingHom ( Z/nZ ` R ) ) -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) |
18 |
12 13 14 17
|
4syl |
|- ( ph -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) |
19 |
18
|
ffund |
|- ( ph -> Fun L ) |
20 |
19
|
adantr |
|- ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> Fun L ) |
21 |
|
simpr |
|- ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
22 |
|
fvelima |
|- ( ( Fun L /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) |
23 |
20 21 22
|
syl2anc |
|- ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) |
24 |
|
simpr |
|- ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> ( L ` c ) = a ) |
25 |
24
|
eqcomd |
|- ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> a = ( L ` c ) ) |
26 |
|
simpll |
|- ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ph ) |
27 |
|
simpr |
|- ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> c e. ( E " ( NN0 X. NN0 ) ) ) |
28 |
26 27
|
jca |
|- ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) ) |
29 |
|
ovexd |
|- ( ( ph /\ m e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) e. _V ) |
30 |
|
vex |
|- k e. _V |
31 |
|
vex |
|- l e. _V |
32 |
30 31
|
op1std |
|- ( m = <. k , l >. -> ( 1st ` m ) = k ) |
33 |
32
|
oveq2d |
|- ( m = <. k , l >. -> ( P ^ ( 1st ` m ) ) = ( P ^ k ) ) |
34 |
30 31
|
op2ndd |
|- ( m = <. k , l >. -> ( 2nd ` m ) = l ) |
35 |
34
|
oveq2d |
|- ( m = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` m ) ) = ( ( N / P ) ^ l ) ) |
36 |
33 35
|
oveq12d |
|- ( m = <. k , l >. -> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
37 |
36
|
mpompt |
|- ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
38 |
37
|
eqcomi |
|- ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) |
39 |
6 38
|
eqtri |
|- E = ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) |
40 |
29 39
|
fmptd |
|- ( ph -> E : ( NN0 X. NN0 ) --> _V ) |
41 |
40
|
ffund |
|- ( ph -> Fun E ) |
42 |
41
|
adantr |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> Fun E ) |
43 |
|
simpr |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> c e. ( E " ( NN0 X. NN0 ) ) ) |
44 |
|
fvelima |
|- ( ( Fun E /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) |
45 |
42 43 44
|
syl2anc |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) |
46 |
|
simpr |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( E ` e ) = c ) |
47 |
46
|
eqcomd |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> c = ( E ` e ) ) |
48 |
47
|
oveq1d |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( c gcd R ) = ( ( E ` e ) gcd R ) ) |
49 |
|
simplll |
|- ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> ph ) |
50 |
|
simpr |
|- ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> e e. ( NN0 X. NN0 ) ) |
51 |
49 50
|
jca |
|- ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> ( ph /\ e e. ( NN0 X. NN0 ) ) ) |
52 |
39
|
a1i |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> E = ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) ) |
53 |
|
simpr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> m = e ) |
54 |
53
|
fveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( 1st ` m ) = ( 1st ` e ) ) |
55 |
54
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( P ^ ( 1st ` m ) ) = ( P ^ ( 1st ` e ) ) ) |
56 |
53
|
fveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( 2nd ` m ) = ( 2nd ` e ) ) |
57 |
56
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( ( N / P ) ^ ( 2nd ` m ) ) = ( ( N / P ) ^ ( 2nd ` e ) ) ) |
58 |
55 57
|
oveq12d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) = ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) |
59 |
|
simpr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> e e. ( NN0 X. NN0 ) ) |
60 |
|
ovexd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) e. _V ) |
61 |
52 58 59 60
|
fvmptd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( E ` e ) = ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) |
62 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
63 |
2 62
|
syl |
|- ( ph -> P e. NN ) |
64 |
63
|
nnzd |
|- ( ph -> P e. ZZ ) |
65 |
64
|
adantr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> P e. ZZ ) |
66 |
|
xp1st |
|- ( e e. ( NN0 X. NN0 ) -> ( 1st ` e ) e. NN0 ) |
67 |
66
|
adantl |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( 1st ` e ) e. NN0 ) |
68 |
65 67
|
zexpcld |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( P ^ ( 1st ` e ) ) e. ZZ ) |
69 |
63
|
nnne0d |
|- ( ph -> P =/= 0 ) |
70 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
71 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) |
72 |
64 69 70 71
|
syl3anc |
|- ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) |
73 |
3 72
|
mpbid |
|- ( ph -> ( N / P ) e. ZZ ) |
74 |
73
|
adantr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( N / P ) e. ZZ ) |
75 |
|
xp2nd |
|- ( e e. ( NN0 X. NN0 ) -> ( 2nd ` e ) e. NN0 ) |
76 |
75
|
adantl |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( 2nd ` e ) e. NN0 ) |
77 |
74 76
|
zexpcld |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( N / P ) ^ ( 2nd ` e ) ) e. ZZ ) |
78 |
68 77
|
zmulcld |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) e. ZZ ) |
79 |
61 78
|
eqeltrd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( E ` e ) e. ZZ ) |
80 |
61
|
oveq1d |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) gcd R ) = ( ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) gcd R ) ) |
81 |
4
|
nnzd |
|- ( ph -> R e. ZZ ) |
82 |
81
|
adantr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> R e. ZZ ) |
83 |
78 82
|
gcdcomd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) gcd R ) = ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) ) |
84 |
81 64 70
|
3jca |
|- ( ph -> ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) |
85 |
70 81
|
jca |
|- ( ph -> ( N e. ZZ /\ R e. ZZ ) ) |
86 |
|
gcdcom |
|- ( ( N e. ZZ /\ R e. ZZ ) -> ( N gcd R ) = ( R gcd N ) ) |
87 |
85 86
|
syl |
|- ( ph -> ( N gcd R ) = ( R gcd N ) ) |
88 |
|
eqeq1 |
|- ( ( N gcd R ) = ( R gcd N ) -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) |
89 |
87 88
|
syl |
|- ( ph -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) |
90 |
89
|
pm5.74i |
|- ( ( ph -> ( N gcd R ) = 1 ) <-> ( ph -> ( R gcd N ) = 1 ) ) |
91 |
5 90
|
mpbi |
|- ( ph -> ( R gcd N ) = 1 ) |
92 |
91 3
|
jca |
|- ( ph -> ( ( R gcd N ) = 1 /\ P || N ) ) |
93 |
|
rpdvds |
|- ( ( ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ P || N ) ) -> ( R gcd P ) = 1 ) |
94 |
84 92 93
|
syl2anc |
|- ( ph -> ( R gcd P ) = 1 ) |
95 |
94
|
adantr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd P ) = 1 ) |
96 |
95
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( R gcd P ) = 1 ) |
97 |
4
|
ad2antrr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> R e. NN ) |
98 |
63
|
ad2antrr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> P e. NN ) |
99 |
|
simpr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( 1st ` e ) e. NN ) |
100 |
|
rprpwr |
|- ( ( R e. NN /\ P e. NN /\ ( 1st ` e ) e. NN ) -> ( ( R gcd P ) = 1 -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) ) |
101 |
97 98 99 100
|
syl3anc |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( ( R gcd P ) = 1 -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) ) |
102 |
96 101
|
mpd |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) |
103 |
67
|
anim1i |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) =/= 0 ) -> ( ( 1st ` e ) e. NN0 /\ ( 1st ` e ) =/= 0 ) ) |
104 |
|
elnnne0 |
|- ( ( 1st ` e ) e. NN <-> ( ( 1st ` e ) e. NN0 /\ ( 1st ` e ) =/= 0 ) ) |
105 |
103 104
|
sylibr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) =/= 0 ) -> ( 1st ` e ) e. NN ) |
106 |
105
|
ex |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( 1st ` e ) =/= 0 -> ( 1st ` e ) e. NN ) ) |
107 |
106
|
necon1bd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( -. ( 1st ` e ) e. NN -> ( 1st ` e ) = 0 ) ) |
108 |
107
|
imp |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( 1st ` e ) = 0 ) |
109 |
108
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( P ^ ( 1st ` e ) ) = ( P ^ 0 ) ) |
110 |
109
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = ( R gcd ( P ^ 0 ) ) ) |
111 |
65
|
zcnd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> P e. CC ) |
112 |
111
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> P e. CC ) |
113 |
112
|
exp0d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( P ^ 0 ) = 1 ) |
114 |
113
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ 0 ) ) = ( R gcd 1 ) ) |
115 |
82
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> R e. ZZ ) |
116 |
|
gcd1 |
|- ( R e. ZZ -> ( R gcd 1 ) = 1 ) |
117 |
115 116
|
syl |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd 1 ) = 1 ) |
118 |
114 117
|
eqtrd |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ 0 ) ) = 1 ) |
119 |
110 118
|
eqtrd |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) |
120 |
102 119
|
pm2.61dan |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) |
121 |
81 73 70
|
3jca |
|- ( ph -> ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) ) |
122 |
1
|
nnred |
|- ( ph -> N e. RR ) |
123 |
122
|
recnd |
|- ( ph -> N e. CC ) |
124 |
63
|
nnred |
|- ( ph -> P e. RR ) |
125 |
124
|
recnd |
|- ( ph -> P e. CC ) |
126 |
1
|
nngt0d |
|- ( ph -> 0 < N ) |
127 |
126
|
gt0ne0d |
|- ( ph -> N =/= 0 ) |
128 |
123 125 127 69
|
ddcand |
|- ( ph -> ( N / ( N / P ) ) = P ) |
129 |
128 64
|
eqeltrd |
|- ( ph -> ( N / ( N / P ) ) e. ZZ ) |
130 |
63
|
nngt0d |
|- ( ph -> 0 < P ) |
131 |
122 124 126 130
|
divgt0d |
|- ( ph -> 0 < ( N / P ) ) |
132 |
131
|
gt0ne0d |
|- ( ph -> ( N / P ) =/= 0 ) |
133 |
|
dvdsval2 |
|- ( ( ( N / P ) e. ZZ /\ ( N / P ) =/= 0 /\ N e. ZZ ) -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) |
134 |
73 132 70 133
|
syl3anc |
|- ( ph -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) |
135 |
129 134
|
mpbird |
|- ( ph -> ( N / P ) || N ) |
136 |
91 135
|
jca |
|- ( ph -> ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) |
137 |
|
rpdvds |
|- ( ( ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) -> ( R gcd ( N / P ) ) = 1 ) |
138 |
121 136 137
|
syl2anc |
|- ( ph -> ( R gcd ( N / P ) ) = 1 ) |
139 |
138
|
adantr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( N / P ) ) = 1 ) |
140 |
139
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( R gcd ( N / P ) ) = 1 ) |
141 |
4
|
ad2antrr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> R e. NN ) |
142 |
73 131
|
jca |
|- ( ph -> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) |
143 |
|
elnnz |
|- ( ( N / P ) e. NN <-> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) |
144 |
142 143
|
sylibr |
|- ( ph -> ( N / P ) e. NN ) |
145 |
144
|
adantr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( N / P ) e. NN ) |
146 |
145
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( N / P ) e. NN ) |
147 |
|
simpr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( 2nd ` e ) e. NN ) |
148 |
|
rprpwr |
|- ( ( R e. NN /\ ( N / P ) e. NN /\ ( 2nd ` e ) e. NN ) -> ( ( R gcd ( N / P ) ) = 1 -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) ) |
149 |
141 146 147 148
|
syl3anc |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( ( R gcd ( N / P ) ) = 1 -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) ) |
150 |
140 149
|
mpd |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) |
151 |
76
|
anim1i |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) =/= 0 ) -> ( ( 2nd ` e ) e. NN0 /\ ( 2nd ` e ) =/= 0 ) ) |
152 |
|
elnnne0 |
|- ( ( 2nd ` e ) e. NN <-> ( ( 2nd ` e ) e. NN0 /\ ( 2nd ` e ) =/= 0 ) ) |
153 |
151 152
|
sylibr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) =/= 0 ) -> ( 2nd ` e ) e. NN ) |
154 |
153
|
ex |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( 2nd ` e ) =/= 0 -> ( 2nd ` e ) e. NN ) ) |
155 |
154
|
necon1bd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( -. ( 2nd ` e ) e. NN -> ( 2nd ` e ) = 0 ) ) |
156 |
155
|
imp |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( 2nd ` e ) = 0 ) |
157 |
156
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( ( N / P ) ^ ( 2nd ` e ) ) = ( ( N / P ) ^ 0 ) ) |
158 |
157
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = ( R gcd ( ( N / P ) ^ 0 ) ) ) |
159 |
123
|
adantr |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> N e. CC ) |
160 |
159
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> N e. CC ) |
161 |
111
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> P e. CC ) |
162 |
69
|
ad2antrr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> P =/= 0 ) |
163 |
160 161 162
|
divcld |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( N / P ) e. CC ) |
164 |
163
|
exp0d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( ( N / P ) ^ 0 ) = 1 ) |
165 |
164
|
oveq2d |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ 0 ) ) = ( R gcd 1 ) ) |
166 |
158 165
|
eqtrd |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = ( R gcd 1 ) ) |
167 |
82
|
adantr |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> R e. ZZ ) |
168 |
167 116
|
syl |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd 1 ) = 1 ) |
169 |
166 168
|
eqtrd |
|- ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) |
170 |
150 169
|
pm2.61dan |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) |
171 |
120 170
|
jca |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 /\ ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) ) |
172 |
|
rpmul |
|- ( ( R e. ZZ /\ ( P ^ ( 1st ` e ) ) e. ZZ /\ ( ( N / P ) ^ ( 2nd ` e ) ) e. ZZ ) -> ( ( ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 /\ ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) -> ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) = 1 ) ) |
173 |
82 68 77 172
|
syl3anc |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 /\ ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) -> ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) = 1 ) ) |
174 |
171 173
|
mpd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) = 1 ) |
175 |
83 174
|
eqtrd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) gcd R ) = 1 ) |
176 |
80 175
|
eqtrd |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) gcd R ) = 1 ) |
177 |
79 176
|
jca |
|- ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) e. ZZ /\ ( ( E ` e ) gcd R ) = 1 ) ) |
178 |
51 177
|
syl |
|- ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) e. ZZ /\ ( ( E ` e ) gcd R ) = 1 ) ) |
179 |
178
|
adantr |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( ( E ` e ) e. ZZ /\ ( ( E ` e ) gcd R ) = 1 ) ) |
180 |
179
|
simprd |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( ( E ` e ) gcd R ) = 1 ) |
181 |
48 180
|
eqtrd |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( c gcd R ) = 1 ) |
182 |
179
|
simpld |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( E ` e ) e. ZZ ) |
183 |
47 182
|
eqeltrd |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> c e. ZZ ) |
184 |
181 183
|
jca |
|- ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) |
185 |
|
nfv |
|- F/ e ( E ` d ) = c |
186 |
|
nfv |
|- F/ d ( E ` e ) = c |
187 |
|
fveqeq2 |
|- ( d = e -> ( ( E ` d ) = c <-> ( E ` e ) = c ) ) |
188 |
185 186 187
|
cbvrexw |
|- ( E. d e. ( NN0 X. NN0 ) ( E ` d ) = c <-> E. e e. ( NN0 X. NN0 ) ( E ` e ) = c ) |
189 |
188
|
biimpi |
|- ( E. d e. ( NN0 X. NN0 ) ( E ` d ) = c -> E. e e. ( NN0 X. NN0 ) ( E ` e ) = c ) |
190 |
189
|
adantl |
|- ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) -> E. e e. ( NN0 X. NN0 ) ( E ` e ) = c ) |
191 |
184 190
|
r19.29a |
|- ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) |
192 |
191
|
ex |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( E. d e. ( NN0 X. NN0 ) ( E ` d ) = c -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) ) |
193 |
45 192
|
mpd |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) |
194 |
193
|
simpld |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( c gcd R ) = 1 ) |
195 |
9
|
adantr |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> R e. NN0 ) |
196 |
193
|
simprd |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> c e. ZZ ) |
197 |
|
eqid |
|- ( Unit ` ( Z/nZ ` R ) ) = ( Unit ` ( Z/nZ ` R ) ) |
198 |
10 197 7
|
znunit |
|- ( ( R e. NN0 /\ c e. ZZ ) -> ( ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) <-> ( c gcd R ) = 1 ) ) |
199 |
195 196 198
|
syl2anc |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) <-> ( c gcd R ) = 1 ) ) |
200 |
194 199
|
mpbird |
|- ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) ) |
201 |
28 200
|
syl |
|- ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) ) |
202 |
201
|
adantr |
|- ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) ) |
203 |
25 202
|
eqeltrd |
|- ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) |
204 |
|
nfv |
|- F/ c ( L ` b ) = a |
205 |
|
nfv |
|- F/ b ( L ` c ) = a |
206 |
|
fveqeq2 |
|- ( b = c -> ( ( L ` b ) = a <-> ( L ` c ) = a ) ) |
207 |
204 205 206
|
cbvrexw |
|- ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a <-> E. c e. ( E " ( NN0 X. NN0 ) ) ( L ` c ) = a ) |
208 |
207
|
biimpi |
|- ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a -> E. c e. ( E " ( NN0 X. NN0 ) ) ( L ` c ) = a ) |
209 |
208
|
adantl |
|- ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) -> E. c e. ( E " ( NN0 X. NN0 ) ) ( L ` c ) = a ) |
210 |
203 209
|
r19.29a |
|- ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) |
211 |
210
|
ex |
|- ( ph -> ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a -> a e. ( Unit ` ( Z/nZ ` R ) ) ) ) |
212 |
211
|
adantr |
|- ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a -> a e. ( Unit ` ( Z/nZ ` R ) ) ) ) |
213 |
23 212
|
mpd |
|- ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) |
214 |
213
|
ex |
|- ( ph -> ( a e. ( L " ( E " ( NN0 X. NN0 ) ) ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) ) |
215 |
214
|
ssrdv |
|- ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Unit ` ( Z/nZ ` R ) ) ) |
216 |
|
hashss |
|- ( ( ( Unit ` ( Z/nZ ` R ) ) e. _V /\ ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Unit ` ( Z/nZ ` R ) ) ) -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( Unit ` ( Z/nZ ` R ) ) ) ) |
217 |
8 215 216
|
syl2anc |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( Unit ` ( Z/nZ ` R ) ) ) ) |
218 |
10 197
|
znunithash |
|- ( R e. NN -> ( # ` ( Unit ` ( Z/nZ ` R ) ) ) = ( phi ` R ) ) |
219 |
4 218
|
syl |
|- ( ph -> ( # ` ( Unit ` ( Z/nZ ` R ) ) ) = ( phi ` R ) ) |
220 |
217 219
|
breqtrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( phi ` R ) ) |