| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c4.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | aks6d1c4.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | aks6d1c4.3 |  |-  ( ph -> P || N ) | 
						
							| 4 |  | aks6d1c4.4 |  |-  ( ph -> R e. NN ) | 
						
							| 5 |  | aks6d1c4.5 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 6 |  | aks6d1c4.6 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 7 |  | aks6d1c4.7 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 8 |  | fvexd |  |-  ( ph -> ( Unit ` ( Z/nZ ` R ) ) e. _V ) | 
						
							| 9 | 4 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 10 |  | eqid |  |-  ( Z/nZ ` R ) = ( Z/nZ ` R ) | 
						
							| 11 | 10 | zncrng |  |-  ( R e. NN0 -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 12 | 9 11 | syl |  |-  ( ph -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 13 |  | crngring |  |-  ( ( Z/nZ ` R ) e. CRing -> ( Z/nZ ` R ) e. Ring ) | 
						
							| 14 | 7 | zrhrhm |  |-  ( ( Z/nZ ` R ) e. Ring -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) | 
						
							| 15 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 16 |  | eqid |  |-  ( Base ` ( Z/nZ ` R ) ) = ( Base ` ( Z/nZ ` R ) ) | 
						
							| 17 | 15 16 | rhmf |  |-  ( L e. ( ZZring RingHom ( Z/nZ ` R ) ) -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 18 | 12 13 14 17 | 4syl |  |-  ( ph -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 19 | 18 | ffund |  |-  ( ph -> Fun L ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> Fun L ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 22 |  | fvelima |  |-  ( ( Fun L /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) | 
						
							| 24 |  | simpr |  |-  ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> ( L ` c ) = a ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> a = ( L ` c ) ) | 
						
							| 26 |  | simpll |  |-  ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ph ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> c e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 28 | 26 27 | jca |  |-  ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 29 |  | ovexd |  |-  ( ( ph /\ m e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) e. _V ) | 
						
							| 30 |  | vex |  |-  k e. _V | 
						
							| 31 |  | vex |  |-  l e. _V | 
						
							| 32 | 30 31 | op1std |  |-  ( m = <. k , l >. -> ( 1st ` m ) = k ) | 
						
							| 33 | 32 | oveq2d |  |-  ( m = <. k , l >. -> ( P ^ ( 1st ` m ) ) = ( P ^ k ) ) | 
						
							| 34 | 30 31 | op2ndd |  |-  ( m = <. k , l >. -> ( 2nd ` m ) = l ) | 
						
							| 35 | 34 | oveq2d |  |-  ( m = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` m ) ) = ( ( N / P ) ^ l ) ) | 
						
							| 36 | 33 35 | oveq12d |  |-  ( m = <. k , l >. -> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 37 | 36 | mpompt |  |-  ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 38 | 37 | eqcomi |  |-  ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) | 
						
							| 39 | 6 38 | eqtri |  |-  E = ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) | 
						
							| 40 | 29 39 | fmptd |  |-  ( ph -> E : ( NN0 X. NN0 ) --> _V ) | 
						
							| 41 | 40 | ffund |  |-  ( ph -> Fun E ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> Fun E ) | 
						
							| 43 |  | simpr |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> c e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 44 |  | fvelima |  |-  ( ( Fun E /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) | 
						
							| 45 | 42 43 44 | syl2anc |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) | 
						
							| 46 |  | simpr |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( E ` e ) = c ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> c = ( E ` e ) ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( c gcd R ) = ( ( E ` e ) gcd R ) ) | 
						
							| 49 |  | simplll |  |-  ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> ph ) | 
						
							| 50 |  | simpr |  |-  ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> e e. ( NN0 X. NN0 ) ) | 
						
							| 51 | 49 50 | jca |  |-  ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> ( ph /\ e e. ( NN0 X. NN0 ) ) ) | 
						
							| 52 | 39 | a1i |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> E = ( m e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) ) ) | 
						
							| 53 |  | simpr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> m = e ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( 1st ` m ) = ( 1st ` e ) ) | 
						
							| 55 | 54 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( P ^ ( 1st ` m ) ) = ( P ^ ( 1st ` e ) ) ) | 
						
							| 56 | 53 | fveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( 2nd ` m ) = ( 2nd ` e ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( ( N / P ) ^ ( 2nd ` m ) ) = ( ( N / P ) ^ ( 2nd ` e ) ) ) | 
						
							| 58 | 55 57 | oveq12d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ m = e ) -> ( ( P ^ ( 1st ` m ) ) x. ( ( N / P ) ^ ( 2nd ` m ) ) ) = ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) | 
						
							| 59 |  | simpr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> e e. ( NN0 X. NN0 ) ) | 
						
							| 60 |  | ovexd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) e. _V ) | 
						
							| 61 | 52 58 59 60 | fvmptd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( E ` e ) = ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) | 
						
							| 62 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 63 | 2 62 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 64 | 63 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> P e. ZZ ) | 
						
							| 66 |  | xp1st |  |-  ( e e. ( NN0 X. NN0 ) -> ( 1st ` e ) e. NN0 ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( 1st ` e ) e. NN0 ) | 
						
							| 68 | 65 67 | zexpcld |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( P ^ ( 1st ` e ) ) e. ZZ ) | 
						
							| 69 | 63 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 70 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 71 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 72 | 64 69 70 71 | syl3anc |  |-  ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 73 | 3 72 | mpbid |  |-  ( ph -> ( N / P ) e. ZZ ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( N / P ) e. ZZ ) | 
						
							| 75 |  | xp2nd |  |-  ( e e. ( NN0 X. NN0 ) -> ( 2nd ` e ) e. NN0 ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( 2nd ` e ) e. NN0 ) | 
						
							| 77 | 74 76 | zexpcld |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( N / P ) ^ ( 2nd ` e ) ) e. ZZ ) | 
						
							| 78 | 68 77 | zmulcld |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) e. ZZ ) | 
						
							| 79 | 61 78 | eqeltrd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( E ` e ) e. ZZ ) | 
						
							| 80 | 61 | oveq1d |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) gcd R ) = ( ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) gcd R ) ) | 
						
							| 81 | 4 | nnzd |  |-  ( ph -> R e. ZZ ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> R e. ZZ ) | 
						
							| 83 | 78 82 | gcdcomd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) gcd R ) = ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) ) | 
						
							| 84 | 81 64 70 | 3jca |  |-  ( ph -> ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) | 
						
							| 85 | 70 81 | jca |  |-  ( ph -> ( N e. ZZ /\ R e. ZZ ) ) | 
						
							| 86 |  | gcdcom |  |-  ( ( N e. ZZ /\ R e. ZZ ) -> ( N gcd R ) = ( R gcd N ) ) | 
						
							| 87 | 85 86 | syl |  |-  ( ph -> ( N gcd R ) = ( R gcd N ) ) | 
						
							| 88 |  | eqeq1 |  |-  ( ( N gcd R ) = ( R gcd N ) -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) | 
						
							| 89 | 87 88 | syl |  |-  ( ph -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) | 
						
							| 90 | 89 | pm5.74i |  |-  ( ( ph -> ( N gcd R ) = 1 ) <-> ( ph -> ( R gcd N ) = 1 ) ) | 
						
							| 91 | 5 90 | mpbi |  |-  ( ph -> ( R gcd N ) = 1 ) | 
						
							| 92 | 91 3 | jca |  |-  ( ph -> ( ( R gcd N ) = 1 /\ P || N ) ) | 
						
							| 93 |  | rpdvds |  |-  ( ( ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ P || N ) ) -> ( R gcd P ) = 1 ) | 
						
							| 94 | 84 92 93 | syl2anc |  |-  ( ph -> ( R gcd P ) = 1 ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd P ) = 1 ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( R gcd P ) = 1 ) | 
						
							| 97 | 4 | ad2antrr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> R e. NN ) | 
						
							| 98 | 63 | ad2antrr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> P e. NN ) | 
						
							| 99 |  | simpr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( 1st ` e ) e. NN ) | 
						
							| 100 |  | rprpwr |  |-  ( ( R e. NN /\ P e. NN /\ ( 1st ` e ) e. NN ) -> ( ( R gcd P ) = 1 -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) ) | 
						
							| 101 | 97 98 99 100 | syl3anc |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( ( R gcd P ) = 1 -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) ) | 
						
							| 102 | 96 101 | mpd |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) | 
						
							| 103 | 67 | anim1i |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) =/= 0 ) -> ( ( 1st ` e ) e. NN0 /\ ( 1st ` e ) =/= 0 ) ) | 
						
							| 104 |  | elnnne0 |  |-  ( ( 1st ` e ) e. NN <-> ( ( 1st ` e ) e. NN0 /\ ( 1st ` e ) =/= 0 ) ) | 
						
							| 105 | 103 104 | sylibr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 1st ` e ) =/= 0 ) -> ( 1st ` e ) e. NN ) | 
						
							| 106 | 105 | ex |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( 1st ` e ) =/= 0 -> ( 1st ` e ) e. NN ) ) | 
						
							| 107 | 106 | necon1bd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( -. ( 1st ` e ) e. NN -> ( 1st ` e ) = 0 ) ) | 
						
							| 108 | 107 | imp |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( 1st ` e ) = 0 ) | 
						
							| 109 | 108 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( P ^ ( 1st ` e ) ) = ( P ^ 0 ) ) | 
						
							| 110 | 109 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = ( R gcd ( P ^ 0 ) ) ) | 
						
							| 111 | 65 | zcnd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> P e. CC ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> P e. CC ) | 
						
							| 113 | 112 | exp0d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( P ^ 0 ) = 1 ) | 
						
							| 114 | 113 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ 0 ) ) = ( R gcd 1 ) ) | 
						
							| 115 | 82 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> R e. ZZ ) | 
						
							| 116 |  | gcd1 |  |-  ( R e. ZZ -> ( R gcd 1 ) = 1 ) | 
						
							| 117 | 115 116 | syl |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd 1 ) = 1 ) | 
						
							| 118 | 114 117 | eqtrd |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ 0 ) ) = 1 ) | 
						
							| 119 | 110 118 | eqtrd |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 1st ` e ) e. NN ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) | 
						
							| 120 | 102 119 | pm2.61dan |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 ) | 
						
							| 121 | 81 73 70 | 3jca |  |-  ( ph -> ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 122 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 123 | 122 | recnd |  |-  ( ph -> N e. CC ) | 
						
							| 124 | 63 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 125 | 124 | recnd |  |-  ( ph -> P e. CC ) | 
						
							| 126 | 1 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 127 | 126 | gt0ne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 128 | 123 125 127 69 | ddcand |  |-  ( ph -> ( N / ( N / P ) ) = P ) | 
						
							| 129 | 128 64 | eqeltrd |  |-  ( ph -> ( N / ( N / P ) ) e. ZZ ) | 
						
							| 130 | 63 | nngt0d |  |-  ( ph -> 0 < P ) | 
						
							| 131 | 122 124 126 130 | divgt0d |  |-  ( ph -> 0 < ( N / P ) ) | 
						
							| 132 | 131 | gt0ne0d |  |-  ( ph -> ( N / P ) =/= 0 ) | 
						
							| 133 |  | dvdsval2 |  |-  ( ( ( N / P ) e. ZZ /\ ( N / P ) =/= 0 /\ N e. ZZ ) -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) | 
						
							| 134 | 73 132 70 133 | syl3anc |  |-  ( ph -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) | 
						
							| 135 | 129 134 | mpbird |  |-  ( ph -> ( N / P ) || N ) | 
						
							| 136 | 91 135 | jca |  |-  ( ph -> ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) | 
						
							| 137 |  | rpdvds |  |-  ( ( ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) -> ( R gcd ( N / P ) ) = 1 ) | 
						
							| 138 | 121 136 137 | syl2anc |  |-  ( ph -> ( R gcd ( N / P ) ) = 1 ) | 
						
							| 139 | 138 | adantr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( N / P ) ) = 1 ) | 
						
							| 140 | 139 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( R gcd ( N / P ) ) = 1 ) | 
						
							| 141 | 4 | ad2antrr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> R e. NN ) | 
						
							| 142 | 73 131 | jca |  |-  ( ph -> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) | 
						
							| 143 |  | elnnz |  |-  ( ( N / P ) e. NN <-> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) | 
						
							| 144 | 142 143 | sylibr |  |-  ( ph -> ( N / P ) e. NN ) | 
						
							| 145 | 144 | adantr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( N / P ) e. NN ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( N / P ) e. NN ) | 
						
							| 147 |  | simpr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( 2nd ` e ) e. NN ) | 
						
							| 148 |  | rprpwr |  |-  ( ( R e. NN /\ ( N / P ) e. NN /\ ( 2nd ` e ) e. NN ) -> ( ( R gcd ( N / P ) ) = 1 -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) ) | 
						
							| 149 | 141 146 147 148 | syl3anc |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( ( R gcd ( N / P ) ) = 1 -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) ) | 
						
							| 150 | 140 149 | mpd |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) | 
						
							| 151 | 76 | anim1i |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) =/= 0 ) -> ( ( 2nd ` e ) e. NN0 /\ ( 2nd ` e ) =/= 0 ) ) | 
						
							| 152 |  | elnnne0 |  |-  ( ( 2nd ` e ) e. NN <-> ( ( 2nd ` e ) e. NN0 /\ ( 2nd ` e ) =/= 0 ) ) | 
						
							| 153 | 151 152 | sylibr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ ( 2nd ` e ) =/= 0 ) -> ( 2nd ` e ) e. NN ) | 
						
							| 154 | 153 | ex |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( 2nd ` e ) =/= 0 -> ( 2nd ` e ) e. NN ) ) | 
						
							| 155 | 154 | necon1bd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( -. ( 2nd ` e ) e. NN -> ( 2nd ` e ) = 0 ) ) | 
						
							| 156 | 155 | imp |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( 2nd ` e ) = 0 ) | 
						
							| 157 | 156 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( ( N / P ) ^ ( 2nd ` e ) ) = ( ( N / P ) ^ 0 ) ) | 
						
							| 158 | 157 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = ( R gcd ( ( N / P ) ^ 0 ) ) ) | 
						
							| 159 | 123 | adantr |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> N e. CC ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> N e. CC ) | 
						
							| 161 | 111 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> P e. CC ) | 
						
							| 162 | 69 | ad2antrr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> P =/= 0 ) | 
						
							| 163 | 160 161 162 | divcld |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( N / P ) e. CC ) | 
						
							| 164 | 163 | exp0d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( ( N / P ) ^ 0 ) = 1 ) | 
						
							| 165 | 164 | oveq2d |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ 0 ) ) = ( R gcd 1 ) ) | 
						
							| 166 | 158 165 | eqtrd |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = ( R gcd 1 ) ) | 
						
							| 167 | 82 | adantr |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> R e. ZZ ) | 
						
							| 168 | 167 116 | syl |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd 1 ) = 1 ) | 
						
							| 169 | 166 168 | eqtrd |  |-  ( ( ( ph /\ e e. ( NN0 X. NN0 ) ) /\ -. ( 2nd ` e ) e. NN ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) | 
						
							| 170 | 150 169 | pm2.61dan |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) | 
						
							| 171 | 120 170 | jca |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 /\ ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) ) | 
						
							| 172 |  | rpmul |  |-  ( ( R e. ZZ /\ ( P ^ ( 1st ` e ) ) e. ZZ /\ ( ( N / P ) ^ ( 2nd ` e ) ) e. ZZ ) -> ( ( ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 /\ ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) -> ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) = 1 ) ) | 
						
							| 173 | 82 68 77 172 | syl3anc |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( ( R gcd ( P ^ ( 1st ` e ) ) ) = 1 /\ ( R gcd ( ( N / P ) ^ ( 2nd ` e ) ) ) = 1 ) -> ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) = 1 ) ) | 
						
							| 174 | 171 173 | mpd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( R gcd ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) ) = 1 ) | 
						
							| 175 | 83 174 | eqtrd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( ( P ^ ( 1st ` e ) ) x. ( ( N / P ) ^ ( 2nd ` e ) ) ) gcd R ) = 1 ) | 
						
							| 176 | 80 175 | eqtrd |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) gcd R ) = 1 ) | 
						
							| 177 | 79 176 | jca |  |-  ( ( ph /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) e. ZZ /\ ( ( E ` e ) gcd R ) = 1 ) ) | 
						
							| 178 | 51 177 | syl |  |-  ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) -> ( ( E ` e ) e. ZZ /\ ( ( E ` e ) gcd R ) = 1 ) ) | 
						
							| 179 | 178 | adantr |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( ( E ` e ) e. ZZ /\ ( ( E ` e ) gcd R ) = 1 ) ) | 
						
							| 180 | 179 | simprd |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( ( E ` e ) gcd R ) = 1 ) | 
						
							| 181 | 48 180 | eqtrd |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( c gcd R ) = 1 ) | 
						
							| 182 | 179 | simpld |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( E ` e ) e. ZZ ) | 
						
							| 183 | 47 182 | eqeltrd |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> c e. ZZ ) | 
						
							| 184 | 181 183 | jca |  |-  ( ( ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) /\ e e. ( NN0 X. NN0 ) ) /\ ( E ` e ) = c ) -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) | 
						
							| 185 |  | nfv |  |-  F/ e ( E ` d ) = c | 
						
							| 186 |  | nfv |  |-  F/ d ( E ` e ) = c | 
						
							| 187 |  | fveqeq2 |  |-  ( d = e -> ( ( E ` d ) = c <-> ( E ` e ) = c ) ) | 
						
							| 188 | 185 186 187 | cbvrexw |  |-  ( E. d e. ( NN0 X. NN0 ) ( E ` d ) = c <-> E. e e. ( NN0 X. NN0 ) ( E ` e ) = c ) | 
						
							| 189 | 188 | biimpi |  |-  ( E. d e. ( NN0 X. NN0 ) ( E ` d ) = c -> E. e e. ( NN0 X. NN0 ) ( E ` e ) = c ) | 
						
							| 190 | 189 | adantl |  |-  ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) -> E. e e. ( NN0 X. NN0 ) ( E ` e ) = c ) | 
						
							| 191 | 184 190 | r19.29a |  |-  ( ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ E. d e. ( NN0 X. NN0 ) ( E ` d ) = c ) -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) | 
						
							| 192 | 191 | ex |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( E. d e. ( NN0 X. NN0 ) ( E ` d ) = c -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) ) | 
						
							| 193 | 45 192 | mpd |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( ( c gcd R ) = 1 /\ c e. ZZ ) ) | 
						
							| 194 | 193 | simpld |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( c gcd R ) = 1 ) | 
						
							| 195 | 9 | adantr |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> R e. NN0 ) | 
						
							| 196 | 193 | simprd |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> c e. ZZ ) | 
						
							| 197 |  | eqid |  |-  ( Unit ` ( Z/nZ ` R ) ) = ( Unit ` ( Z/nZ ` R ) ) | 
						
							| 198 | 10 197 7 | znunit |  |-  ( ( R e. NN0 /\ c e. ZZ ) -> ( ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) <-> ( c gcd R ) = 1 ) ) | 
						
							| 199 | 195 196 198 | syl2anc |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) <-> ( c gcd R ) = 1 ) ) | 
						
							| 200 | 194 199 | mpbird |  |-  ( ( ph /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) ) | 
						
							| 201 | 28 200 | syl |  |-  ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) ) | 
						
							| 202 | 201 | adantr |  |-  ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> ( L ` c ) e. ( Unit ` ( Z/nZ ` R ) ) ) | 
						
							| 203 | 25 202 | eqeltrd |  |-  ( ( ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) /\ c e. ( E " ( NN0 X. NN0 ) ) ) /\ ( L ` c ) = a ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) | 
						
							| 204 |  | nfv |  |-  F/ c ( L ` b ) = a | 
						
							| 205 |  | nfv |  |-  F/ b ( L ` c ) = a | 
						
							| 206 |  | fveqeq2 |  |-  ( b = c -> ( ( L ` b ) = a <-> ( L ` c ) = a ) ) | 
						
							| 207 | 204 205 206 | cbvrexw |  |-  ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a <-> E. c e. ( E " ( NN0 X. NN0 ) ) ( L ` c ) = a ) | 
						
							| 208 | 207 | biimpi |  |-  ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a -> E. c e. ( E " ( NN0 X. NN0 ) ) ( L ` c ) = a ) | 
						
							| 209 | 208 | adantl |  |-  ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) -> E. c e. ( E " ( NN0 X. NN0 ) ) ( L ` c ) = a ) | 
						
							| 210 | 203 209 | r19.29a |  |-  ( ( ph /\ E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) | 
						
							| 211 | 210 | ex |  |-  ( ph -> ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a -> a e. ( Unit ` ( Z/nZ ` R ) ) ) ) | 
						
							| 212 | 211 | adantr |  |-  ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> ( E. b e. ( E " ( NN0 X. NN0 ) ) ( L ` b ) = a -> a e. ( Unit ` ( Z/nZ ` R ) ) ) ) | 
						
							| 213 | 23 212 | mpd |  |-  ( ( ph /\ a e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) | 
						
							| 214 | 213 | ex |  |-  ( ph -> ( a e. ( L " ( E " ( NN0 X. NN0 ) ) ) -> a e. ( Unit ` ( Z/nZ ` R ) ) ) ) | 
						
							| 215 | 214 | ssrdv |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Unit ` ( Z/nZ ` R ) ) ) | 
						
							| 216 |  | hashss |  |-  ( ( ( Unit ` ( Z/nZ ` R ) ) e. _V /\ ( L " ( E " ( NN0 X. NN0 ) ) ) C_ ( Unit ` ( Z/nZ ` R ) ) ) -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( Unit ` ( Z/nZ ` R ) ) ) ) | 
						
							| 217 | 8 215 216 | syl2anc |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( Unit ` ( Z/nZ ` R ) ) ) ) | 
						
							| 218 | 10 197 | znunithash |  |-  ( R e. NN -> ( # ` ( Unit ` ( Z/nZ ` R ) ) ) = ( phi ` R ) ) | 
						
							| 219 | 4 218 | syl |  |-  ( ph -> ( # ` ( Unit ` ( Z/nZ ` R ) ) ) = ( phi ` R ) ) | 
						
							| 220 | 217 219 | breqtrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( phi ` R ) ) |