| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c1rh.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c1rh.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c1rh.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c1rh.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c1rh.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c1rh.6 |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | aks6d1c1rh.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c1rh.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c1rh.9 |  |-  ( ph -> F : ( 0 ... A ) --> NN0 ) | 
						
							| 10 |  | aks6d1c1rh.10 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c1rh.11 |  |-  ( ph -> A e. NN0 ) | 
						
							| 12 |  | aks6d1c1rh.12 |  |-  ( ph -> U e. NN0 ) | 
						
							| 13 |  | aks6d1c1rh.13 |  |-  ( ph -> L e. NN0 ) | 
						
							| 14 |  | aks6d1c1rh.14 |  |-  E = ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) | 
						
							| 15 |  | aks6d1c1rh.15 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 16 |  | aks6d1c1rh.16 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 17 |  | nfv |  |-  F/ z ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) | 
						
							| 18 |  | nfv |  |-  F/ y ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) | 
						
							| 19 |  | fveq2 |  |-  ( y = z -> ( ( ( eval1 ` K ) ` f ) ` y ) = ( ( ( eval1 ` K ) ` f ) ` z ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( y = z -> ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( y = z -> ( e ( .g ` ( mulGrp ` K ) ) y ) = ( e ( .g ` ( mulGrp ` K ) ) z ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( y = z -> ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) | 
						
							| 23 | 20 22 | eqeq12d |  |-  ( y = z -> ( ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) ) | 
						
							| 24 | 17 18 23 | cbvralw |  |-  ( A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) <-> A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) | 
						
							| 25 | 24 | 3anbi3i |  |-  ( ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) <-> ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) ) | 
						
							| 26 | 25 | opabbii |  |-  { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) } | 
						
							| 27 | 1 26 | eqtri |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) } | 
						
							| 28 |  | eqid |  |-  ( Poly1 ` K ) = ( Poly1 ` K ) | 
						
							| 29 |  | eqid |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) | 
						
							| 30 |  | eqid |  |-  ( var1 ` K ) = ( var1 ` K ) | 
						
							| 31 |  | eqid |  |-  ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) | 
						
							| 32 |  | eqid |  |-  ( mulGrp ` K ) = ( mulGrp ` K ) | 
						
							| 33 |  | eqid |  |-  ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) | 
						
							| 34 |  | eqid |  |-  ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) | 
						
							| 35 |  | eqid |  |-  ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 36 |  | eqid |  |-  ( eval1 ` K ) = ( eval1 ` K ) | 
						
							| 37 |  | eqid |  |-  ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) | 
						
							| 38 | 27 28 29 30 31 32 33 34 35 2 36 37 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | aks6d1c1 |  |-  ( ph -> E .~ ( G ` F ) ) |