Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1rh.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks6d1c1rh.2 |
|- P = ( chr ` K ) |
3 |
|
aks6d1c1rh.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks6d1c1rh.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks6d1c1rh.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks6d1c1rh.6 |
|- ( ph -> N e. NN ) |
7 |
|
aks6d1c1rh.7 |
|- ( ph -> P || N ) |
8 |
|
aks6d1c1rh.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks6d1c1rh.9 |
|- ( ph -> F : ( 0 ... A ) --> NN0 ) |
10 |
|
aks6d1c1rh.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
11 |
|
aks6d1c1rh.11 |
|- ( ph -> A e. NN0 ) |
12 |
|
aks6d1c1rh.12 |
|- ( ph -> U e. NN0 ) |
13 |
|
aks6d1c1rh.13 |
|- ( ph -> L e. NN0 ) |
14 |
|
aks6d1c1rh.14 |
|- E = ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) |
15 |
|
aks6d1c1rh.15 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
16 |
|
aks6d1c1rh.16 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
17 |
|
nfv |
|- F/ z ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) |
18 |
|
nfv |
|- F/ y ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) |
19 |
|
fveq2 |
|- ( y = z -> ( ( ( eval1 ` K ) ` f ) ` y ) = ( ( ( eval1 ` K ) ` f ) ` z ) ) |
20 |
19
|
oveq2d |
|- ( y = z -> ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) ) |
21 |
|
oveq2 |
|- ( y = z -> ( e ( .g ` ( mulGrp ` K ) ) y ) = ( e ( .g ` ( mulGrp ` K ) ) z ) ) |
22 |
21
|
fveq2d |
|- ( y = z -> ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) |
23 |
20 22
|
eqeq12d |
|- ( y = z -> ( ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) ) |
24 |
17 18 23
|
cbvralw |
|- ( A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) <-> A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) |
25 |
24
|
3anbi3i |
|- ( ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) <-> ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) ) |
26 |
25
|
opabbii |
|- { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) } |
27 |
1 26
|
eqtri |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. z e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` z ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) z ) ) ) } |
28 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
29 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
30 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
31 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) |
32 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
33 |
|
eqid |
|- ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) |
34 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
35 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
36 |
|
eqid |
|- ( eval1 ` K ) = ( eval1 ` K ) |
37 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
38 |
27 28 29 30 31 32 33 34 35 2 36 37 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
aks6d1c1 |
|- ( ph -> E .~ ( G ` F ) ) |